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Without any doubt, Paul Erdds is ome of the most famous mathemati-
cians in the world. His areas of interest include number theory, set the-
ory, probability, analysis, and graph theory. He has probably written more pa-
pers for mathematical journals than any other living mathematician. He is
very well known for his fondness of travel and has surely lectured in more uni-
versities than anyone else. FErdds usually writes a joint paper with one or
more of the mathematicians at each university he visits. So it was not en-
tirely unnatural that a fantastic (false) rumor was spread about him to the ef-
fect that he even wrote a joint paper with a railroad conductor while trav-
eling from one university to another. After his home base at the Mathe-
matical Institute of the Hungarian Academy of Science in Budapest, his fa-
vorite locations are the Techmion in Haifa, Israel, and the University Col-
lege, London.

Everyone who has met him knows the classical Erdds terminology. An
epsilon is a child. A married couple consists of one boss and one slave, the
wife and husband respectively. When a couple is married, the boss is said to
have captured the slave. After a divorce, the slave is liberated. If the man
should remarry, he is said to be recaptured, and so on.

As indicated in the lecture itself, the subject of extremal problems in
graph theory was initiated by another Hungarian mathematician, Paul Turdn.
Presently, it is the most popular area of graph theory in Hungary with pa-
pers on the subject written by Erdds jointly with each of the mathemati-
cians, Andrdsfai, Bollobds, Gallai, Hajnal, and Pdsa (who was an ep-
silon of only thirteen when his prodigious talent was discovered by the lec-
turer).

F. H.

The starting point for many extremal problems in graph theory is the work

of Turéan [13] and [14] who initiated this topic in 1940 while in a labor camp. He
showed that every graph with n points and 1 + [n?/4] lines contains a triangle.
Throughout this lecture, G(n; m) will denote an arbitrary graph with n points
and m lines. Also, K(m,n) will denote the complete bicolored graph with m

* Another article with the same title appeared in Theory of graphs and its applications,
edited by M. Fiedler. Prague, 1964, pp. 29-36. All results given without references are
unpublished.
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points of one color and n of the other. Similarly, K(ny,ns,...,n;) will denote
the complete k-colored graph with n; points of the ith color.

Turan’s result asserts that every graph G(n;1 + [n?/4]) contains the com-
plete graph Ks. This is the best possible result because there ex-
ists a graph, namely K([(n + 1)/2], [nl2]), with [n?/4] lines but no tri-
angles. These facts are illustrated in Fig. 8.1 where n = 5; graph Gi
has seven lines and a triangle, whereas G, has six lines and no trian-
gle. More generally, for each integer p < n, Turdn determined the least in-
teger m(n,p) such that any graph G(n;m(n,p)) contains the complete graph
K,. He also showed that the only graph G(n;m(n,p) — 1) which does not con-
tain K, is K(n;,ne2,...,np—1), where the n; are as nearly equal as pos-
sible.  Dirac [5] showed that in addition to containing K,, any graph
G(n;m(n,p)) contains Kpi1 — z, the graph obtained from Kp,y1 by delet-
ing one line.

The graphs G(n; 1+ [n?/4]) have other interesting properties. When n > 4,
each such graph contains the first graph shown in Fig. 8.2, and when n is
sufficiently large, it contains all of the graphs with one cycle as shown in Fig.
8.1. Furthermore, it contains any of the four possible graphs G(5;6) with five
points and six lines, all shown in Fig. 8.3. In addition, for n large enough, any
graph G(n;I + [n?/4]) contains both of the graphs with five points and seven
lines shown in Fig. 8.4. These two graphs are special cases of the following
result. For any integer r, there is an integer no(r), such that when n > ng(r),
each graph G(n; 1+ [n?/4]) contains a subgraph of the form

K([(r+1)/2],[r/2]) + x,

obtained by adding a line to the complete bipartite graph. Similarly, for n large
enough, every graph G(n; 1+ [n?/4]) contains the cycle Cajy1.

A variation of this problem is the determination of the value of f(n,k,r),
the smallest integer m such that every graph G(n;m) contains some graph
with k points and r lines. As indicated above, f(n,3,3), f(n,4,4), f(n,4,5),
f(n,5,5), and f(n,5,6) all have the same value, 1 + [n?/4], for n sufficiently
large. In general, not much is known about f(n,k,r), but we do have the
following results.

If r <k/2, then f(n,k,r)=r.

Ifk/2 <r <k, then f(n,k,r) = f(n,2r+2—k,2r+1—k).

Lastly, f(n,k,k—1)=1+ {(kk_fl)n}'

Questions remain concerning f(n, k, k). There are only two graphs G(4;4),
the first graph of Fig. 8.2 and C4. The extremal graphs for the former have
been found, but for the latter, the problem remains unsolved. In 1938 Erddgs
proved the existence of a constant ¢ such that every graph G(n; [cn®/?]) contains
a cycle of length 4 for n large enough. Reiman [12] showed that for arbitrarily
small € and sufficiently large n,
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and it has just been shown by Brown, Rényi, Sés, and Erdés that
f(n7 47 4) 1
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Ké&vari, Sés, and Turan [10] have shown that for some constant ¢, every
graph G(n;[cn?~'/*]) contains K (p,p), which is a special case of a problem of
Zarankiewicz [15]. Except when p = 2, however, it is not even known if this
order of magnitude is best possible. Another open problem is the determination
of how many lines a graph must have to ensure that the graph K;+ K(p,p) is a
subgraph. Again, Dirac and Erdds have settled this independently when p = 2.
When p = 3, it is conjectured that the extremal graph is the join of two cycles
Clint1)/2) + Clny2)-

In 1941 Rademacher (see Erdés [6]) showed that every graph G(2n;n? + 1)
contains n triangles. Generalizing this, Erdés [7] proved the existence of a
constant ¢ such that when k& < cn, every graph G(2n;n? + k) contains kn
triangles. This is false when k& = n since the graph K, 1+ Chy1 contains n? +n
lines but only n? — 1 triangles. In proving this, several interesting lemmas were
required. For example, there exists a constant ¢ < 1/3, such that every graph
G(2n;n%+1) contains a line belonging to at least [cn] triangles. It has also been
shown that every graph G(3n;3n? + 1) contains n? cycles of length 4 and that
the result is best possible.

Ore [11] proved that every graph G(n;2+n(n+1)/2) contains a hamiltonian
cycle, clearly another best possible result. Dirac [3] has shown that any graph
in which all points have degree at least n/2 is also hamiltonian. We have proved
that every graph G(n;r) is hamiltonian if every point has degree at least k and
r> (”Q_t) +12 for every t satisfying k < t < n/2. This result is also best possible.
The proof uses the following theorem of Pdsa which generalizes Dirac’s result:
A graph with n points is hamiltonian if whenever k < n/2, there are at most
k — 1 points with degree less than k + 1.

It has been conjectured that any graph with rm points, all of degree at least
m(r — 1), contains mK,. Its validity when r = 2 follows from Dirac’s result [3]
on hamiltonian cycles; Corradi and Hajnal [2] proved it when r = 3. Erdds and
Gallai [8] have shown that every graph G(n;r) contains m independent lines if

T>max{<2m2_1>,n(m—l)—(m—1)2+ <m2_2>}

In this problem the extremal/graphs are Kop,—1 and K,p,—1 + f{n,mﬂ.

It was shown by Dirac [4] (see also Erdés and Pésa [9]) that when n > 4,
every graph G(n; 2n—2) contains a subgraph homeomorphic to Ky, still another
best possible result. It has also been conjectured that when n > 5, every graph
G(n;3n — 5) contains a subgraph homeomorphic to K.

Bollobéas and Erdds [1] proved that every graph G(n;[(3n — 1)/2]) con-
tains a cycle and another point adjacent to two points of the cycle, and thus ev-
ery such graph contains two points which are joined by three linedis-
joint paths. These results are best possible. It was conjectured that every
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graph G (1 +n(m—1);1+ n(g”)) contains two points which are joined by m dis-
joint paths. The graph K + nK,, shows that, if true, this is best possible. Bol-
lobas proved this for m = 4; in fact, he showed that every graph G(n; 2n—1) con-
tains two points which are joined by four line-disjoint paths and this is best pos-
sible. Perhaps every graph G(n;2n — 2) contains a cycle and another point ad-
jacent to three points of the cycle. If true, this would strengthen Dirac’s re-
sult mentioned above because in the subgraph homeomorphic to Ky, the three
paths incident with one point would consist of a single line. It is obvi-
ous that every graph G(n;n) contains a cycle. A complicated result due to
Erdds and Poésa [9] is that every graph G(n; (2m — 1)n — 2m? + m + 1) con-
tains m disjoint cycles if n > 24m. The result still holds when a line is re-
moved if doing so does not yield the graph Ko,,—1 + Kn72m+1- The condi-
tion that n > 24m can be weakened somewhat. The contribution made by
Posa, who was thirteen years old at the time, was the following ingenious ar-
gument, which can be generalized, to show that every graph G(n;3n — 5) con-
tains two disjoint cycles if n > 6.

That this result holds when n = 6 may be verified by considering the various
possibilities. Assume that it is valid when n < ¢ — 1 and consider any graph
G(t;3t — 5). There is some point, say wg, in which the degree d(wy) < 5.
Suppose that wyg is adjacent only to the five points wy, ws, ws, wy, ws. If the
subgraph induced by these six points contains at least 13 lines, the result holds,
since it has already been established when n = 6. If not, then there is a point
wy which is not adjacent to at least two of the other points, say ws and ws.
Add the new lines wiws and wiws, and remove wg and the five lines incident
with it from the original graph. There remains a graph G(¢ — 1;3t — 8) which
contains two disjoint cycles by the induction hypothesis. At least one of these
two cycles does not contain either of the lines wyws or wyws. In any case, it is
easily seen, by including wq in a cycle if necessary, that the original graph must
contain two disjoint cycles if d(wp) = 5.

Next, consider the case where wq is adjacent only to the four points wi,
wo, w3, w4. It may be assumed that the subgraph generated by W =
{wo, w1, we, w3, wy} is K5 since otherwise an argument similar to that used
above yields the required result. Let H = G(t;3t — 5) — W, the graph ob-
tained from the original graph G(¢;3t — 5) by removing the points of
W. If any point in H is adjacent to two or more points in W, the re-
sult is clearly true. So it may be supposed that no point in H is adja-
cent to more than one point in W. Remove wgy, wy, and ws from the orig-
inal graph. The remaining graph has n — 3 points and at least (3n — 5) —
(n—5)—9 = 2n — 9 lines. Since 2n —9 > n — 3 if n > 6, this remain-
ing graph has at least one cycle. This cycle and wyw;wswg form two disjoint cy-
cles in the original graph.

When the degree d(wg) < 3, the result is shown by applying the induction
hypothesis to the graph G(t;3t — 5) — wp. This suffices to complete the proof
by induction.

We close with a proof of the following result by Pésa. Every graph G(n;n+4)
contains two line-disjoint cycles. The result is proved for multigraphs. This
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clearly holds when n = 1. Assume that it holds when n = ¢t — 1 and consider
any graph G(t;t+4). If the graph contains a cycle C of length 3 or 4 the result
certainly holds since removing the lines of C' yields a graph with a cycle line-
disjoint from C. Hence it may be assumed that every cycle has length greater
than 4. If there is a point of degree 1, the result follows by removing this point
and applying the induction hypothesis to the remaining graph. If some point vg
is adjacent to only two points v; and vy, then the induction hypothesis can be
applied to the graph obtained by adding the new line v;vy and removing vg. If
one of the two line-disjoint cycles in this graph contains the line viv2, then this
line is replaced by the lines vyvy9 and vgvs in the original graph. Hence, it may
be assumed that the degree of every point in the graph G(t;t + 4) is at least
3, which implies that 3t/2 < ¢ + 4, that is, ¢ < 8. But it is not difficult to see
that there are no multigraphs with fewer than nine points in which every point
has degree at least 3 and every cycle has length greater than 4. Therefore, the
result holds when n =t and hence in general by induction.

References

[1] B. BorLLoBAs and P. ERDOs, On extremal problems in graph theory (in
Hungarian). Mat. Lapok. 13 (1962) 143-152.

[2] K. CorrADI and A. HAJNAL, On the maximal number of independent
circuits in a graph. Acta Math. Acad. Sci. Hung. 14 (1963) 423-439.

[3] G. A. DIrRAC, Some theorems on abstract graphs. Proc. London Math. Soc.
(3) 2 (1952) 69-81.

[4] G. A. DIrAc, In abstrakten Graphen vorhandene vollstindige 4-Graphen
and ihre Unterteilungen. Math. Nachr. 22 (1960) 61-85.

[5] G. A. DIrAC, Extensions of Turan’s theorem on graphs. Acta Math. Acad.
Sci. Hung. 14 (1963) 417-422.

[6] P. ErRDOS, Some theorems on graphs. Riveon Lematematika 9 (1955) 13—
17.

[7] P. ErRDOGS, On a theorem of Rademacher-Turan. Ill. J. Math. 6 (1962)
122-127.

[8] P. ErRDOS and T. GALLAI, On maximal paths and circuits of graphs. Acta
Math. Acad. Sci. Hung. 10 (1959) 337-356.

[9] P. ErDOs and L. P6sA, On the maximal number of disjoint circuits of a
graph. Publ. Math. Debrecen 9 (1962) 3-12.

[10] T. KOVARI, V. T. SOs, and P. TURAN, On a problem of K. Zarankiewicz.
Collog. Math. 3 (1954) 50-57.

[11] O. ORE, Arc coverings of graphs. Ann. Mat. Pura Appl. 55 (1961) 315-322.



6 P. ErRDOGsS

[12] 1. REmMAN, Uber ein Problem von K. Zarankiewicz. Acta Math. Acad. Sci.
Hung. 9 (1958) 269-279.

[13] P. TUrAN, Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz.
Lapok. 48 (1941) 436-452.

[14] P. TURAN, On the theory of graphs. Collog. Math. 3 (1954) 19-30.
[15] K. ZARANKIEWICZ, Problem 101. Colloqg. Math. 2 (1951) 301.



