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ON A PROBLEM OF GRAPH THEORY

by
P. ERDOS!, A, RENYT: and V. T. 8082

§ 0. Introduction

Let &, be a non-direeted graph hiaving » vertices, without parallel edges and
slings. Let the vertices of G, be denoted by Py, ..., P,. Let v(P)) denote the valency
of the point P;and put
(0.1) F{G,) = max o{F).

| BT
Let E(G,) denote the number of edges of G,. Let H,(n, &) denote the set of all
graphs G, for which V(G,)=Fk and the diamecter D(G,) of which is =d
(k=1,2, ..com—1l;d=23, ..., n—=1).
In the present paper we shall investigate the quantity

(0.2) Fyim, k)= min  E(G,).

G £ Halm, &)
Thus we want to determing the minimal number N such that there exists a graph
having n vertices, ¥ edges and diameter =4 and the maximum of the valencies
of the vertices of the graph is equal to k.

To help the understanding of the problem let us consider
the following interpretation. Let be given in a country n airports;
suppose we want to plan a network of direct flights between these
airports so that the maximal number of airports to which a
given airport can be connected by a direct flight should be equal
to & (i.e. the maximum of the capacities of the airports is pres-
cribed), further it should be possible to fiy from every airport
to any other by changing the plane at most 4 — | times; what is
the minimal number of flights by which such a plan can be
realized? For instance, if n=7, k=3, d=2 we have F,(7, 3)=9 Figo
and the extremal graph is shown by Fig. 1.

The problem of determining F,(n, k) has been proposed and discussed recently
by two of the authors (see [1]). In § 1 we give a short summary of the results of the
paper [1], while in §2 and 3 we give some new results which go bevond those of
[1]. Incidentally we solve a long-standing problem about the maximal number
af edges of a graph not containing a cycle of length 4.

In §4 we mention some unsolved problems,

Let us mention that our problem can be formulated also in terms of 0—1
matrices as follows: Let M=(g;,) be a symmetrical n by » zero-one matrix such
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216 P, ERDOS, A, BENYT AND W, T, 808

R
thate;=1, max X &;=k+1 and all elements of M are =1. We want to
1=isin j=1
determine

M, (n k) = min 2‘ 25”.
imEf=]
Clearly

(0. 3) Ml kYy=2F(n, &) +n.

This formulation shows the connection of our problem with non-linear programming.

We give for the case d=2 a third formulation of our problem which displays
its connection with the theory of block designs,

Let be given a sequence A, 4, ..., A  of subsets of the elements 1,2, ..., 10
such that if j&€ A, then i€.4,. Let us suppose that denoting by |4| the cardinal number
of the set 4, we have max |4;|=k. Let us suppose that for any i (1=i=n) and

L= f=n
any j=i such that j§ A; there is a set A, which contains both { and § (this i5 equivalent
by our supposition of symmetry to the statement that the sets 4, and 4, are not
disjoint). The problem is to determine

i
(0.4) min 2, |4, = 2F5(n, k).
Iy |

§ 1. Some Basic Inequalities, and some Asymptotic Resulls

It is easy to see that if there exists a graph G, with V(G )=k and diameter

=d, then
1 E—=1p=)
(1.1) u=i-|-4f4:—k_2

(1. 1) can be proved as follows: if ¥(G,)=k the number of points which can be
reached [rom a given point, say, P, by an edge is =&; the number of points which
can be reached from P, by a path of length 2 is =k(k —1) and finally the number

of points which can be reached by a path of length  is = k(k —1)¥=1, Thus if the
graph has diameter =4 we have

n=D=k{1+ k=1 + k=1 + L+ k=11

This proves (1. 1). If both 7 and & are odd. then G, must contain at least one
point of valency =k—1 (because the number of points of odd valency cannot be
odd); thus in this case we get

(1.2) P tans L

k—2
Mote that for the graph shown by Fig. |, equality stands in (1.2}, For the graph
shown on Fig. 2 (the so-called Petersen-graph) equality stands in (1. 1) with n=10,
k=3,d=2.
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0% A PROBLEM OF GRAPH THEORY 217

As regards Fy(n, k) we obtain easily the lower

bound
: m{n=1)(k—2)

(1.3) Fyln k) = 2= 1F=1)
(1. 3) can be proved as follows: every edge is itself a
path ol length 1; it can be contained in at most
2(k—1) paths of length 2, but in this way each
path of length 2 is counted twice, thus the num-
ber of paths of length 2 cannot exceed E(G)(k—1).
In general each edge can be contained in at most
3(k—1)* paths of length 3, but in this way each
path of length 3 is counted three times, thus the
number of paths of length 3 cannot exceed Fig. 2
E(G,)(k—1)? ete. As in case @, has diameter

=¢ the number of paths of length = d has to be at least [;) , we obtain

(1.4) EGH1+k=1)+ ... +(k—1)p1) = [;]

which implies (1. 3), Note that one has equality in (1. 4) for the Petersen graph shown
on Fig. 2., further for n=35, k=2, d=2 because a cycle of length 5 has 5 vertices,
each of which has valency 2, it has diameter 2 and the number of its edges is 5= ;—:-; "

It is clear from the above prool that one can have equality in (1. 4) only for a
regular graph of order &, i e. if ;'E.‘q‘,{.?.}s=ll-'2E and if any two points are joined by

one and only one path of length =d.

The first condition implies that if equality stands in (1. 4) then there is equality
in (1. 1) too. For the case d=2 this means that a necessary condition of equality
in (1. 4) is n=Kk*+ 1. It has been shown by A. J. Hoirman and R. R. SinGLETON [4]
that a regular graph of order k, having k* +1 points and diameter 2 exists only
for k=2,3 7 and perhaps for &=57. Thus for d=2 except for these values of
k one has strict inequality in (1. 3), However it has been shown in [1] that there
exists an infinite sequence of pairs (kj, n)) such that &k, ==, n,--= and

im 20 k), 1
(1-3) }L".: mn—1 27

This is a consequence of the following

TueaneM 1, If Pis any prime power, there exists a graph G, of ordern=P* 4 P+ 1
Jor which V(G,) =P+ 1, which has diameter 2 and for which E(G)= ¥ (n*? +n).
The graph G, has also the propercty that (¢ does not contain any evele of length 4,

To make this paper self-=contnined we reproduce the prool of Theorem | given
in [1L

Hiwcdia Seientieram Mathemoficarum Hungarica 1 (e




218 P, EROAS, A RENYLAND V. T, 508

Proor or Tureorem 1, Let GF(F) be the Galois field with P elements, Let
us represent the points of the finite plane geometry PGP, 2) by triples (a. b ¢)
where a, b, ¢ are elements of GF(P), not all three equal to 0. and (da, Ak, Ac) with
AEGF(P), A=0 represents the same peint as (&, b, ¢). The number of different
points of PG(P, 2) is P*+ P+ 1. A straight line in PG(P, 2) is the set of all points
(x, ¥, ) which satisfy the equation gx + by +ecz=0; we denote this line by [a, &, ¢].
The point {4, &, ¢} and the line [, b, ¢] are clearly conjugate elements with respect
to the conie ¥ - 2 422 =0. As well known there are P+1 points on each line,
any two different lines have exactly oné point in common and through any two
given points there is exactly one straight line. Now we define the mapping T which
maps the point A=(a, b, ¢) into the line a=[a, b, ¢] and conversely. We write
TA=a. Tu=A. This mapping has evidently the properties: i the point B lies on
the line =114 then the point A lies on the line f=T8; if C is the point of inter-
section of the lines 74 and T8 then TC 1s identical with the line passing through
the points 4 and B; A={a, b. ¢} is on T4 if and only if a* + b2+ c2=0, ie if 4
lies on the conic x*+y*42*=0. Now let us define a graph G, (n=P*+ P+ 1)
as follows: the vertices of G, #re the points of PGP, 2): the vertices A ={a, b, ¢)
and A" ={a’, ¥, ¢") are joined in G, by an edge if and only if 4" is lying on TA (and
thus A is lying on TA"). Clearly a vertex A in G, has the valency P or £+ 1 ccording
to whether A is on the conic x> +3*+2*=0 or not.* Thus

|

(1.6) ;l-{n-‘”—u};—’ P(P*+P+1) = E(G)

|

and

: !
E(G)= 5 (P+D(P1+P+1) = %—{njl'3+iﬂ.

Finally the diameter of G, is equal to 2. As a matter of fact any two points
A und B can be joined by the path ACH where € is the point of intersection of the
lines T4 and T'B, Besides this 4 and 8 can be joined by a single edge if A lies on T5.
But the point € such that the edees AC and BC both belong to G, is in any case
unique; thus &, does not contain any eycle of length 4.

Thus our Theorem is proved.

We deduce from Theorem | the following corollaries.

CoroLLary |. Put my=4k*—Kk-1; then

v i F;{ﬂg,k}k w., 1
{I-?j llf'-lll.-n Tk{}ij = E.

* Il P 15 prime, there are P-+1 peints on the conic and: thus

PP+ 1) i
—l— b, 1-:1'-"'3 If n=na.

E{G) =

Stuniz Scientlerum Mathematicarim Hunodrioa T (1086}




ON A FROBLEM OF GRAPH THEORY 219

Proor o CoroLiary 1. By (1. 3)

Fylm )k 1

ol an—1) — 2
further if k=P+1, =P+ P+ 1, by Theorem 1
(1.9) Fo(PP4FP+1, P4+11= 2 (P+1IMP*+ P+ 1)
thus in this case
- Film. vk 1 1
1. 10 2 .L_E_-_[ 4___].
( ) melne—1) 2 1 P’

this proves our assertion.

Theorem | enables us also to solve — at least asymptotically — a problem
which was raised by one of us 27 years ago (see [2]).*

Let C, denote the class of graphs having » vertices and containing no cycle
of order 4. Put

(111 win) = max E(G,).

GrEy

The problem is to determine the value of u(x). From Theorem | we deduce the
following

CoroLLary 2. We have

. plm) 1
(1.1 lim =5

ProoF oF Cororrary 2, It follows clearly from Theorem | that if Pis a
prime power, then putting n=P2+ P+ 1

(1.13) i) = %{;}3'5—n).

It is possible that for these n the graph of Theorem 1 is extremal but we can-
not prove this. Clearly u(n) is an increasing function of n, and thus it follows that
for any n we have

(1.14) pin) = %[P2+P+1]3-‘3—{P’+P+ 1]

where P is the largest prime power such that P2+ P+ 1=n. Now evidently for
n=n; one can choose a prime p o that

(1.13) n— =p=Jln—1

*: After having written this paper we have been informed by W. G. Brown that independ-
ently of us he has proved (1.12), in the same way as we did, His paper will be published in the Bul-
letin of the Canadian Mathematical Society,
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which implies for n=u,

3
R = pt
n[l lﬂﬂﬂ] =prt+pt+l=un

Thus we have for any n=n,

(1. 16) 4) = %n’ﬂ[l——lu;nj
and thus
(1.17) mwm’é

On the other hand it is eusy to see (this follows also from the results of L. REMAN
in [3]) that

(1. 18) hmmp ”{"} 1.

As n matter of fact, let G, bea graph containing no cycle of order 4, Let £y, Py, ..., P,
be the vertices of G, and let us denote their valencies by vy, vy, ..., 0, . Now clearly one

can select from the set E; of vertices joined byancdgctnf.ﬁ‘) pairs, and no

pair (P, P,) can be contained in both E; and E, with /= because otherwisz P, P, P, P,
would be a cycle contained in G,. Thus we must have

(1.19) émﬁm‘

Now we have

ENP
and thus
(1.21) [ —n ,Z'p, 'flnzllﬁlu[]ﬁn
IF‘ Im ]
As clearly 2-::1'=IEIG,}, we have
[ |
(1.22) 4L (G)—2mE(G)=n*
which implies
(1.23) EG) = .
! = ta T a
Thus
I |
(1.24) %E"f = EVHEB b

which implies (1. 18}, Thus Corollary 2 is proved.

Studia Sclentiprum Mathomaticartm Huyngarion (1060}
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Let us note that weaker results have been obtained previously by E. KL

(see [2]) and 1. REmann [3], who proved Iun :nf “j‘;‘:} =- :2 REmMANN's extremal
graph does not contain triangles either; it is pﬂSHbIE that among such graphs it is
optimal.

Note that for the pairs (n;, k,) for which according to Corollary 1 one has

AN LT
1,29 fim = = 2

one has &k J~Vﬂ_;. It was shown in [I] that there exists another sequence of pairs
(ky.n)) such that

(1.26) jiin 22kl
Jmm my{m;—1)

-

but lor this sequence of pairs one has lim k" = 4 s,
b

It remains an open question what is the w:[ue of the function gic) defined by

2 e Fa(n KDk
{1.27 gle) Iiﬂ’.’:f—n{n-l}

A==

for | == +==; we know only that g{¢} is nondecreasing, | =g(c)and limg(ec)=1.

od o

§ 2. Some Exact Results for d=1.

In this § we deal with the exact value of Fi{n, k) lor ; =k=n~—1. Evidently,

Fy(n, n~1)y=n—1, because the graph G, in which one vertex is joined by an edge
with all others, has diameter 2, further V(G)=n~1 and E(G,))=n—1. It has
been shown in [1] that Fy(n, n—2)=2n—4 (a graph G, with F(G,)=n—2 and
E(G,)=2n—4 and having the diameter 2 is shown by Fig. 3; another graph with
the same properties is shown by Fig. 4), further that &5 (n, n—3)=Fy(n, n—4)=
=2 —35, (The corresponding extremal graphs are shown by Figs, 5 and 6.)

2 5,
X -

: » 3
o, 2, ;
s %

VG, n-2 = VG, e a2
ElG,1=2n-b i EfB)e 2nah

Fig. 3 Fig. 4

Studla Ecisnilarum WMaikomaticarum Hungarica | [106)
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We shall prove now
Tueorem 2. We have for n=13
(2.1} Fafn, k) = 2n—4  for

o, B,

P’:
WG, 1= n-3
EfE.)=2n-5

Fig. 5

Proor o Tueorem 2. The extremal graph &, with

ki
3

Ii#
[Ih

V(G =k = n—1, F !

and E(G.)=2n—4 and having diameter 2 is exhibited by Fig. 7.

n+2

ViG)=n-{, E(G)=2n-4, S5=(= T

A

VG, )= ni-4 &
E(Gn)* 2n-5

Pap
2. VIG,3en-t, E[G,)=2n-4, 5-.-.9:"'7*2. A3

Fle, & Fig. 7
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MNote that all vertices of G, except Py, P; and P, have the valency 2, further
o(P)=n—1 v(P)Y=n~—{. v(P;)=21—2 and by supposition 2/—2=n—I. Thus
V(G,) =n—I. Clearly G, has diamecter 2 and the number of edges of G, is

—={y3-21—2 —
pG) = 20=D+A-2+20-3) _, .

_n+2

We prove that for any G, withn=13, V(G,)=n -1 [5 =/ v and diameter

2 one has B(G,)=2In-4,

As EGy= 2 3

25
of degree =3. If G, would contain no point of degree =2, then let us choose a point
of degree 3; let this point be P,. Let the points connected by an edge with P, be
denoted by P,, Py and P,. As every point can be reached from P, by a path of
length =2, we must have t(Py) +el(Py) +e(Py=n—L

Now if there would be a point among the points Py, ..., P, which would be
connected with more than one of the ponts Py, Ps, Py we would have o{P,)+
4 r(Py)-+o{P)=n; as all other points have degree =3 it would follow

o(P)) we may suppose that G, contains al least one point

-

e(P)=n+3n—-3)=4n—9

und thus E(G,) =2n—5 e, E(G,)=2n—4, which was to be proved, Thus we may
suppose that all points P,(5 = /= n) are connected with one and only one of P, P,
and P, similarly we can suppose that Py, Py and P, are not connected with each
other because this would again imply e(P) +o(Py) +elPy) =n and thus E(G)=
=2n—4, IF there is at least one among the P, with 5={=n which has degree =3,
it again follows that E(G,)=2n —4. If however all have degree 3, let us suppose
that o(Py)=min(v(P,), 0(P,), {Ps)) which implies v(P;) . ;l . Let P; be
connected with P;. Then v{Ps)=3 and let the three points connected with P be
Py, P, and Py clearly i=5 and j=i=5. But then v(Py)-+v(P)+v(P)=n—1
and thus
2=
6 = 0(P) +v(P)) = l{fa—”!

that is n=10:

As we supposed n = 13, this case is settled.

The case when there is a point P; of valency | is casily settled, because if this
point is Py, and 2, is connected with £, only, then P; has to be connected with
the remaining n —2 points too, and thus would have valency n— 1. Thus the only
case which remains to be seltled is when min v(P)=2 Suppose ¢(P;)=2 and

1=tz
let P, be connected with P, and P,. Then all remaining points have to be connected
either with P, or with Py or with both.

Let C, denote the class of points P, with f=4 connected only with P;, and
¢, the number of elements of C, ; let C, be the class of points P, with i =4 connected
only with P and ¢, the number of elements of C.; finally let €, be the class of points
connected with both Py and Py, and ¢, the number of elements of C;. Clearly

Ktudia Scientiorum Mathematicarum Hungaricd 1 (1960
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€y 3 +e3 = n—3. As the valency of Py cannol exceed n—7 and P, is connected
with every point in @, exeept itself and the points in €y, we have ¢y =/-2=13,
Similatly e ={—2=3,

The number of edges in &, the existence of which is already established is
clearly ¢, +¢;+2¢3+2=n+¢y—1. Let us call these the edges of the first kind,
and the remaining edges those of the second kind. As the groph has diameter 2,
every point of C, has to be connected by a path of length = 2 with every point of C,.
Such a path can not contain an edge of the first Kind. Thus the graph G° consisting
of the edges of the second kind has to be connected. NMow three cases are possible.
Either G” contains besides the points of €, and C, at least one further point from
the class C,: in this case it contains at least ¢, 4 ¢; + 1 points and thus there are
at least ¢, +¢5 edges of the second kind, and thus the total number of cdges is
E(G)=n+es—14¢, +e3=2n—4 Or P; and Py are connected by an edge:
in this case we get again F(G)=2n—4. Or Py and Py are not connected and G
consists only of the points of C, and C,. In this case the connected graph G is
gither a tree or not. I it is not a teee, it contnins at Jeast ¢; +¢; edges and thus we
obtain again E(G,)=2n—4. If 6" is a treg, it must have at least two end-points. We
may suppose that C, contains an endpoint of G'. Let x be the total number of end-
poinis of G" in €. Then the sum of valencies (in ) of the points of C, is at least
x+2(e; —x). As G, bas diameter 2 and P, amd Py are not directly connected, any
endpoint of G" in €, has to be connected by a path of length 2 to Py, it follows that
for every endpoint P of G”in C, the single edge starting from P ends in C,. Let
¥ denote the number of points in €, which are connected with an endpoint of G*
in €, If O is such u paoint, clearly & has to be connected with every other point
of C,, because otherwise there would not exist 4 path of length 2 from P to
these points. Now clearly no point of €, can be an endpoint of G, because it must
be¢ connected (o at least one point in €, and also to Q. Thus the sum of valencies
in G of the points of C, ist at least 2(cs —y)+ ¥ic; —1)+x. It follows that the
number of edges of the second kind is at leas

1 -3
3 (x+20c,—x)+ 2oy =)+ yles—D+x) = ey +ea+y IEIE_] = oy 43,

because, as we have shown, ¢, =3
Thus we have shown that E(G,) =2s—4 and the proofl of Theorem 2 is complete.
Note that the restriction #=13 in Theorem 2 is necessary. because for n-13

there is no value of & between and #—5.

3

As regards the value of F,(n, k) for k {.'._’nj;l we can show that for n=13

- T
In—k—6 for 3"5'*.-x-~:“"32

Sn—
{2.2) Fy(m k) =4 5n—4k—10 for ——— =k =

dn—2k—13 for =k

St Seiontiarnm Mathematioarum Hungarica 1 (180)
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We give in what follows the extremal graphs for these 3 cases, That these are really
extremal can be proved in a way similar to the proof of Theorem 2, therefore we
leave the details to the reader.

In—13 2n—2

THE EXTREMAL GRAPH FOR 5 =k= —5 -

The graph has four points of high degree; let us denole them by 4, B, C, D
and four groups of points.

There is a group denoied by A8, the points of which are joined to A and 1o B.
The group contains 2k —n points. In the group BCD (connected with B, € and D)
there are n — k — 1 points. In the group AC (whose points are connected with 4 and C)

there are [%} points; finally in the group AD (the points of which are con-

nected with A and D) there are u—k—s—[m] points, Further the geaph
contains the edges A8 AC. AD. The points 4 and 8 have the degree k. The whale
graph has 3n—k—6 edges.

THE EXTREMAL GRAPH FOR 5";35‘-#-: 3"5 3
There are 5 points of high order, A, B.C, D, E.

The group AB  has 2k —n puints.

The group BECD has[ ] points,

The group BCE has o —k—| —-[%] poings,
The group AC has 2k —n points.
The group ADE has 2n - 3k — 4 points.
Further the edges AB, AC, AD, AE, DE belong to the graph. The points 4, B
and € have the valency n— k: the total number of edges is Sn—4& — 10,

THE EXTREMAL GRAPH FOR 1;—] k= -5"T3

There are 6 points of high order, 4, B, C, D, E, F.
The group A8 contains 2k —n points.

Fo it
The group BCE contains |~ . L1 poiitts;
The group BDF contains n—k —l—[ ] paints,
The group ADC contains F_—;_s

n—k-—35
The group AEF containy n—k— 5—[—z—~l points,

The graph contains further the edges A8, AC, AD, AE, AF. Thegraphhas4n —2k —13
cdges.

13
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For k{¢ we cannot determin: Fail(m, k) cxactly. However, we can get

a fairly good ui;p-ar bound by constructing graphs of diameter 2 by the lollowing
principles. We divide all but [;] af the points of a graph G, into r groups of

approximately the same size. We connect the points of each pair of groups with
one of the remaming points, and connect as many of thése points with each other

Pr 'DE 'ﬂv! 'crﬂ pf+1 ﬂ:r ":ﬂ-!'cﬂ-s ":'.u ":'_uu'-"’.u'z -‘:'4.:

Fig. &

as needed. Forinstanze il r=4, n =4/ + 6, we pul/ pointsin each of 4 groups, connect
each of the 6 pairs of groups with one of the remaining 6 points, and connect each
of these points with that point which is connected with the other twe groups. The
graph obtained is shown by Fig. 8. It follows that

(2. 3) Fadl+6, 20+ 1)=121+3.

§ 3. Some Results for d=3.
We prove first

Tueorem 3. We have for every #, every k=n—1 and d=3
3 P
it fn
@B.1) Fi(n k) = s [|—4V -k-.-,-],
Proor oF THeorem 3. Let us put
a ,—
(3.2) 5=4 i}.

Clearly we may suppose =1, because otherwise (3. 1) is toivially fulfilled. We have
evidently

(3.3) ; D

F T
Jord

Sruclin Selentiprum Mathematicaruwm Hungarlea 1 (I06F)
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We may suppose n=Kk'-", because any graph G, with diameter =d is connected
and thus has at least n—1 edges; thus Fy(n, k)=n»—1 and if p= k-1 the inequality

(3. 1) is trivial. Thus we have to prove (3, 1) only for K= <n :g i.e. for (64n)'M =

T
Let G, be u graph having n vertices, diameter  and such that FiG,)=k.

Let us denote by X;; ..., X, those vertices of G, the valency of which is =
let ¥y, oo Y-, bethe remaining vertices of G,. We have clearly

4n
g

x5 2(n—s)n
(3.4) Em}_}qumngum] T
Thus if
smaf1-20-2)
we have
* |
(3.%) E(G,) = ;—_,u —é).

Thus we have Lo consider only the case

(3.6) ;,n[]_ﬁ;{@_

We distinguish two cases, Either every X (1 =i=y4) is connected with at least
[I '%‘]P#-_n of the vertices ¥, or not. In the first case we have
d n
G.7 f:m.wzsllh-]%_u —O) 27
Thus we may :uppue‘ac that there is an X; — say X; — which is connected with less
than [1 i] -1 ¥;-s. We shall show that this case is impossible. By supposition

we can reach, starting from X, every vertex of G by a path of length =d . Let us
consider first those paths starting from X, the next vertex of which is an ¥.

As ¥, can be chosen in -:ll-g—l-kg_—, ways, and all vertices of G, have valency
=ik, the number of such pathes is at most

| n _ _ i
{JE} [IFI_]F{I-J_“;‘- l}“l‘{k—”lf-"-l-{k—lr I]E'[—E'ﬂ.

* We may also suppose that k=64,

13 Snadin Sclentiarum Mathematiegrion Hungarica 1 (1860
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Let us count now the pathes of length =4 starting from X, on which the point
next to X, is an X;. The number of such pathes s clearly at most

dn 4n
E-15 I+kd‘—[§

(3.9) (1 — 1) .o (e— l}‘“’]] = 53’

Tt follows from (3. 8) and (3. 9) that the total number of vertices which can be reached

8 . 12
from X, by a path of length =4, can not exceed n [1 _E] whichis =n—2ifn= 5
and this is true if n— 1 =k =64 thus we arrived to a contradiction and this proves
our theorem.

3

: i) ! o
To show that the order of magnitude = of the lower estimate of Fi(m, k)

is best possible; consider the following graph G,: Take a complete graph G, having
r vertices, .and connect each vertex of G, with r—1 new points. Thus we nhtam
a graph G with r{r—l}+ t=ri=n vemcas, ClearI} one has & = V(G )=2r—

DG,)=13 and H-‘I_r,,}——i{r—l] Thus E{G,,]mﬁ"

In this example & —Z[Fn — 1) by slightly modifying this example we obtain that
1
o2 (3+¢)

To show that Fi(m, &) 15 of order of magmtude

Fyln, k) =

if k~en where 0=c-=1.

s for k~Ai¥n where
0=A=1 we have to apply a more involved construction. Let us consider a graph
G, which has the vertices P,; where | =g=/ | =i=3 I=f=s and the vertices
Oy where 1=g=h={and | =i=g; thus n;!£2+[%]a'. Suppose that the edges
of G, are as follows:

a) P, and Py, are both connected with Qg for I=sg<h=/ i j=1,2, ..

b) O, is connected with Q4 for 1=, =5 1=i,=4 [, =1, l=g= h—f

€} Opu and @, dre connected for l=g, <k =1 and 1=g,=h, =/
=12, ..., &

Clearly

P — 1 [.v
= 2[2)"“ +[2] 2]*

further v{P,,;)=5—1 and

Sttdie Scientiorum Mathomoticarum Hunparies I (i8]
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and thus V(G)=s5+1+ 1[?,]] — 2. Thus we obtain

B

By other words by choosing for / an arbitrary fixed natural number and for s tending
1o 4 ==, we obtain an infinite sequence of pairs n, k such that

K~ and  Fy(n k) = -

4 F
Thus for arbitrary small 4 =0 there exists an infinity of pairs m, & such that k ~ i)'nand
3.
e

Let us study nuwthe behaviour of Fy{n k) for large values of k. Clearly
Fyln, k)=n—1 if .l'ﬁ" because the graph G, shown on Fig, 9 has diameter 3

FiG)=kand G,isa I.n:\e thus it has n— | edges; this result s best possible because
a connected graph G, cannot have less than n—1 edges.

Fi(n, k) =

plu‘:

'n-irl

p' pkun

We prove now the following

THeEoREM 4. U‘TT I-x—lrﬁk==—+s—2 witere 'r-..l,..‘ = [l." J

F,{n,k}=n+[2)—l.
ProoF oF THEOREM 4. The zase s=1 has been settled above. Let us consider

first the case s=2. Suppose G, would be a tree of diameter 3 and V(G,]l:kE-;-.
and let Py be an endpoint of G, (such a point exists as every tree has at least two

Smpdin Selemttarum Mathamaotoorum Hungarics § {(1966)
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endpoints), Let Py denote the single point connected with 2| by an edge, and let
Py, ..., P; be all the other points connected with Py as F{G,)=& we have [=k+1.
The remainmmgn—k—1=k—1=/—2 poinis have to be connected with one ol the
points Pa, .o, Py because otherwise it would be impossible to reach them from
P, by a path of Izngth =3. But they can not be all connected with the same point
P (3=jf=I) because this point would have valency =k. Let P, and P, be two
points ({=r-<g=n) such that P, is connected with P; and P, with F; 3=i<j=1),
Then the (unique) path from P, to P, has length 4: this contradiction shows that

Fyln. ky=n for kig

On the other hand Fig. 10 shows a graph G, with ¥(G,) =& where %-!— l=k= %
which has diameter 3 and contains ¢xactly one cycle (a toangle) and thus E(G,) =n.

This completes the proof of the fact that F(n, k)=n for % +1=k= %

Note tha! for n=2k + | there is another extremal graph G;.; of diameter 3,
for which F{Gs . )=k and E(G.;. )=2k+ 1, shown by Fig. 11.

Picia

Bpic

Pai 41 Fhsa

V(G0 = ki ECBayal= 2hkal, DGy =3
Fig. 10 Fig. i1
Mow we pass to the case $=3.
3
5 no s S i
Let G, be a graph with F{G )=k H_IT5_1=.-‘:='T+S_2+S":-V 7

and D(G,)=3. Let X, ..., X, be the endpeints of G,. As the remaining n — ! points
all have valency =2, and at least one among them has valency &, we have

EG) = & (I+k+2n—1~1) =n—1 +5 1,

Studie Scientidrom Mathemaotfcarum Hungarica § (1563)



ON A FROBEEM OF GRAFH THEORY 31
Now il E(G,) E_n-fr[':]—l. we have nothing to prove; il however E(G,)=n+

E
—f—[z]—-! we get
fo=k =s{s—1)=s5—1

thus /=2, Let ¥,,..., ¥, denote those vertices of G, which are connected with
at least one X; (1=j=I)

Clearly ¥; and ¥, are connected by an edge (1 =i~j=v) because otherwise
there would not exist a path of length 3 connecting the X,-s. Thus it is sufficient
to consider the case v=s, because every connected graph (7, containing a complete

s+ 1-graph has at least n—1+[;]:dgcs. Let us suppose therefore that va=as.

We prove first that v =s. Let the endpoint X, be connected to ¥,. Let Z,, ... Z,
denote all the points connected with ¥, which are notl endpoints of G,. As every
paitt of G, ean be réached from X, by a puth of length =3, i’ ¥, is connected

v
with p endpoints then we have E::{Zﬂzn— p—1 thus

E{G.}Ei{n p=l+piril+2(n—I—r—1)) = ?-’—j—‘r

thus in case E{G'}{"+[2)_l we get
I=n—r—s(s=1).

- As however each ¥, has valency =ik, it can be connected to at most k of the X -5,
and ¥, only to k—r X-s; thus

{p—=1)k+k—r=n—r—s{s—1)
s —
and therefore, in view uf:ﬁlxg--,w: obtainv=s5—1 i.e, =5 Thus we have cnly
to consider the case v=g, Now if ¢=gs there exist in G, at least 5 points which
are not connected to any of the ¥-s because these hu‘fh valencies =& and thus

the total number of poinis Gontected with: thern s =5k~ (s—1))=n—s Let W
be such a point.

Now clearly W has to be connected with =ach X by a path of length 3 and
therefore with each Y; by a path of length 2. Let U, ..., U, be the points connected
with W, then each ¥ is connected with some U, Thus it follows

E(G,) = %{I‘J+a{s- 1)+ 25+2t4-2(n—1—s5—t—1)) =

¥ 5
— I+[2]+.r+:+n—1—ﬁ'—r—l = n+[1]—-l.

Thus Fs(n, k) §n+[;] — |. On the other hand consider the graph G, of the follow-
ing structure: let us take & complete graph G,., having s+ | points, and connect
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each of these points except one with & — s endpoints, and the Iast with n —s(k —5)—
—{5+1) points. (Clearly O0=pn—sk—5s)—{3+11=k—3s).

Thus we obtain a graph G, with V(G =k, D(G,)=3 and E{G,,',l=n+[;) - 1.

This completes the prool of Theorem 4.
Let us consider now F,(m, k). Clearly

Fin, B)=n—1 if k=}n-—1.
This can be seen as follows, Fig. 12 exhibits a tree of diameter 4 showing that
Flf-[k: —i_ ll k}=k2
Clearly if (k—1)*+1=n=k*+1, we obtain a graph G, exhibiting Fy(n, k)=
=n—1 by omitting from the graph on Fig, 12 k%41 —n endpoints. We shall
prove now

THEOREM 5.
A 1 4
Fle+2.k) = k* + 145 V& (k=23 ..)

Proor oF THEOREM 5. Let Gy, be an exi-
temal graph ie. one which has k*+2 points,
diameter 4, satisfies the condition F{G,:, )=k and
has F,(k*+2, k) edges.

Let Xy, ..., X, be the points of G-, having
valency =2, and let GF be the subgraph of Gz
spanned by these points. We assert that each point

Pac-1

~El X, has the valency =2 in G}, too. Suppose that
ik X, is an endpoint of G, and that X, is the only
Bysokiih point of GE to which X, is connected. Clearly X,

is connected with at least one endpoint ¥, of

(2. 5 because it has valency =2 in Geay s, thus it

Figr. 12 is connected with some point of G, different

from X, and this point cannot be m G and

thus is an endpoint of Gz, . Every point of Gy.yy can be reached by supposition

from ¥, by a path of length =4. However the number of points which can be
reached from ¥, by such a path is clearly

=2—1+(k—1P¥=k*

which 15 a contradiction, Thus in G each point has valency =2, As the diameter

of G5 is =4, it follows from (1. 1) that G contains at least one point of valency
4 4

Ym—1; thus the number of edges of G% exceeds (m — 1)+ 4 {F*m —1). Each point
in G can be connected with at most k — 2 endpoints of Gy, ; thus K2 +2=m+

p_tl.. |.

: R B
+m{k—2)y=m(k—1) and therefore m ~;—‘-I-':1--F:'A +1; thus
- G e
E(Gpaia) = Kelt B (F"m— 1} =kt ] 5 Fk.

Thus Theorem 3 is proved.
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MNote that the statement of Theorem 5 is trivial for k=16, because it states
only what we know already that if D{Gra.;) =4 then Gi:., can not be a tree.

To get an upper estimate for Fo(k* 42, k) —k* consider the following graph.
Take a graph Gy.s with V(Gies)=k, P(Gpes)=2 and E(Gyos)=2k-+6; such
a graph exists according to Theorem 2 if ¥ =8 (sec Fig. 7 with /=75). This graph
has &+ 2 points of valency 2. Connect k& out of these points with £ —2 new points
each and one with k& —3 new points. Thus we get a graph 7, with n=4%> 42 points,
such that V(G) =4k, D(G)=4 and E(G,)=Kk*4k+3. Thus

Fk*+2, k) =k*+k+3.

§ 4. Some further Remarks and Unsolved Problems

First we formulate some general principles of construction which were implicitely
used above.

If G, is a graph of diameter d, and such that V{G) =k, then if G,15 not regular,
we may construct from @, a graph Oy of order N=n-+kn— E(G,) with V(G =k
and diameter 4+ 2, by connecting each veriex P; of &, which has valeney ¢{P;)=k
with it —u(£;) new points. Thus

f4. 1) Fypal(n+kn—2F;n k), k)=kn~ Fy(n, k).

For instance we have shown that Fi(mn—3)=2n—4. It follows mmediately
from (4. 1} that
Fon®—8n+8, n—5=n—Tn+4.

Notice that for each value of d, the extremal graphs &, with V(G )=k, D(G,)=d
and having & minimal number of edges, are trees if & is sufficiently large, & = U (1) say.
We have implicitely shown that

(4.2) Us:im=n—1
(4.3) Us(n) = %
(4. 4) o Uyn)y=Fn—1.

It can be shown that

14 }2n—3
4. 5) e
further that for any fixed s=3 and n—+~=
(4. 6) Uy ()~ Vn
and
'n
.7 Usns )~ )/ 5

The extremal tree of diameter 25 has a center, while the extremal tree of diameter
2541 has a central edge.
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Wotice that il k decreases by one below the critical value Uy(n), ie. to Uyln)—1,
there js a considerable increase in the value of Fy(n, k) if o is even, but not if d i5
odd. As a matter of fact

Fy(n, Us(n) = 1) = Fy(n, Us(n)) = (In=4)—(n—1) = n-3

F2k+1L,E)—F(Zk+1,k+D= 2k+1)=2%k=1
and
Fy(2k+2 k)= Fy(2k+2, k4 1) = (2k+3)—(2k+1)=2

further as proved by Theorem 5

F‘{kz '1‘21:-&}_};'4{#14‘1..‘:] =

The situation is similnr for d=4.
We call attention to the following problems, left open in this paper:

ProprEM 1. Is the graph of Theorem | extremal in the sense that among all
graphs with » vertices and not containing any cycle of length 4 does it have the
maximal number of edges? (We have proved only that it is asymptotically extremal.)

‘We can prove the following result, which is connected with Problem 1.

Teeormm 6. If G, is a graph in which any two points are connected by a path
of length 2 and which does not contain any cycle of length 4, then n=2k 41 and
G, consists of & triangles which have one common

vertex (see Fig. 13).

\ ; /k > 5 Proor oF Treorem 6. Let G, be a graph

with the required properties. Let Py be a point of
G, having maximal valency. If P, is connected with
M : 5 all the remaining points of G, then evidently these
have to be connected by pairs, and G, is of the
type described in Theorem 6, Thus we may suppose
that G, contains at least one point P, which is

nol connected with P,. It is easy to see that in this
case F(P;)=F(F,).

As a matter of fact there isa point Py in G,

Fig. 13 which is connected with both P, and P,. As there

must be a path of length 2 between £, and Py

there is a point Py which is connected with both P, and Py As there has to be a path

of length 2 between P; and P, there is a point Ps connected with both P; and P,

which is clearly different from P, P., P, and P, Let 0,,0,, ..., Os_; be the

remaining points (besides Py and P,) which are connected with P,. Clearly Py

and P; are not among the Q;; we have k=4 because v(Py)=4 .and by supposition
P, has the maximal valency.

Now from each of the points Q; there is o path of length 2 to P,; thus for each

@ (i=1.2, ..., k—2) there exists a point R, which is connected with bath Q, and P,

Clearly R; =R, il i#j because otherwise G, would contain the cycle P,Q,R,Q;.

Further R, is different from P, because if R, would be identical with P, wnufd

contain the cyele PO PPy, Finally R; is different from P; because otherwise @,

21’
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would contain the cycle PyQPsPy. Thus v(Ps}=k and as k= V(G we obtain
t{Py)=Fk=uv(Py), Thus any point of G, which is not connected with £, has the va-
lency k=wv(P,). Repeating the same argument with P, instead of P, it follows that
v(@)=k(i=1.2,....k—2). As P, is not connected with @, (because otherwise &,
would contain the cycle P; @ Py P,) repeating the same argument for @ instead of
P, it follows that ¢(P;)=k. Thus the graph G, is regular.

Now if V(P)=k (i=1,2,...,n) and G, does not contain a cycle of length 4
and between any two points there is a path of length 2, then clearly if” S, denotes
the set of points connected with P, then the sets §, and S, have exactly one point
in common, and for any two points P, and P; (j+1) there is exactly one point P,
such that §; contains both P, and P. Thus if we define the sets of points §, as lines
we obtain a finite plane geometry, with k=P + 1 points on a line, and thus having
n=P*+P+1 points. But then in this geometry there would exist a one-to-one
mapping beween points and lines such that no line contains the point corresponding
to it, and such a mapping is known [3] to be impossible. This proves Theorem 6.

Propiem 2, To determine the exact value of Fiim, k) for k-r% , OF at lzast

the asymptotic value of Fy(n, [ne]) with 0=¢= 1.
Proscem 3. Is the lower estimate in Theorem 3 asyvmptotically best possible,
1
i:e. do there exist foreach o= 13 a sequence of graphs G, (n— =) with(G,) =k ~ ¢nt-1

where e=0 is a constant, D(G,)=d and E{G"}mj%u;—_] 7

ProBLEM 4, Determine asymptotically Fy(k* 42, k) —K=.

Problems similar to those considered in this paper can be asked for directed
graphs. We hope to return to these problems in an other paper.

{ Received February f, 1965,)
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