SOME REMARKS ON NUMBER THEORY

BY
P. ERDOS

ABSTRACT
This note contains some disconnected minor remarks on number theory.

I. Let
() |z =L 1sj<w

be an infinite sequence of numbers on the unit circle. Put

s(k,ny= X 25 A, =limsup |s(k,n)|
i=1 k=m

and denote by B, the upper bound of the numbers |s(k,n)|. If z; = eri
o # 0 then all the A4;’s are finite and if the continued fraction development of
o has bounded denominators then 4; < ck holds for every k (c, ¢y, -~ will denote
suitable positive absolute constants not necessarily the same at every occurrence).
In a previous paper [2] T observed that for every choice of the numbers (1),
limsupy = By = 00, but stated that I can not prove the same result for A,.
I overlooked the fact that it is very easy to show the following

THEOREM. For every choice of the numbers (1) there are infinitely many
values of k for which

(2) Ay >y log k.

To prove (2) observe that it immediately follows from the classical theorem of
Dirichlet that if |y‘| =1,1 <i =< n are any n complex numbers, then there is an
integer 1 < k < 10" so that (R(z) denotes the real part of z)

1
2 3
Apply (3) to the n numbers z,,4, ", Z 41y 0 = r < 00."We obtain that there
isa k < 10" for which there are infinitely many values of r so that

@) R(i zf,,,,) =
T 2

(3) ROY > 1<ign.
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(4) immediately implies A, = n/4, thus by k < 10" (2) follows, and our Theorem
is proved.

Perhaps A, = ck holds for infinitely many values of k*. In this connection I
would like to mention the following question: Denote by f(n,¢) the smallest

integer so that if [z,| = 1, | <i < n are any n complex numbers, there always is
an integer 1 =< k = f(n,¢) for which
n
> |l = ¢
i=1

A very special case of the deep results of Turéan [8] is that f(n, 1) = n. Rényi and
I [3] obtain some crude upper bounds for f(n,c,) if ¢ > 1, but our results are too
weak to improve (2).

II. Is it true that to every & > 0 there is a k so that for n > n, every interval
(n,n(1 + &)) contains a power of a prime p; < p,? It easily follows from the theorem
of Dirichlet quoted in I that the answer is negative for every & < 1, since the
above theorem implies that to every » > 0 there are infinitely many values of m
so that all primes p; = p, have a power in the interval (m, m(1 4+ x)) and then
the interval (m(1 + n), 2m) must be free of these powers. Let us call an increasing
function g(n) good if to every n > 0 there are infinitely many values of n so that
all the primes p; < g(n) have a power in (n,n(1 + #)). It easily follows from the
theorem of Dirichlet and n(x) < cx/logx that if

loglog n - logloglog n)
5 =
(%) g(n ﬂ( loglogloglog n
then g(n) is good. I leave the straightforward proof to the reader. T can obtain

no non-trivial upper bound for g(n).
Let 1 <o <2 and put

(6) A,y = 21/ p

where in 2’ the summation is extended over all primes p for which n < p® < an
for some integer f=1. (5) and quljp=loglog y + 0(1) implies that for
infinitely many n

(7) A(n,x) > loglogloglog n + 0(1).

Now we are going to prove

(8) lim inf A(n,a) = 0.

To prove (8) we shall show that to every & > 0 there are arbitrarily large values
of n for which
) A(n, o) <e.

* By a remark of Clunie, we certainly must have ¢ < 1. Added in proof: Clunie proved
flne) < gle)ynlogn, A, > ek i
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Let k = k(e) be sufficiently large. Consider Y'A(2", %) where in X' the
summation is extended over those I,1 <1< x for which the interval (2,22
does not contain any powers of the primes p;,1 =i = k. Put

L log(1

Let o, -, be positive numbers which are such that for every choice of the
rational numbers r,---, 7, not all 0, Z¥_ iz, is irrational. The classical theorem
of Kronecker-Weyl states that if we denote by x,,1 = n < w0 the point in the k
dimensional unit cube whose coordinates are the fractional parts of na;, 1 =i =k
then the sequence x, is uniformly distributed in the k dimensional unit cube.
From this theorem is easily follows that the number of summands in Y AR %)
is (1 + o(1)xD(x, k). Thus to prove (9) it will suffice to show that for every
sufficiently large x

(10) YA ) < iz D(a, k)x.
We evidently have
Z :4(2"‘ 0!) = z u(j1x)

pe<pi=2® P

where u(j,x) denotes the number of those integers 1 < 1 < x for which the interval
(2, 12’) contains a power of p;, but does not contain any power of p, 1 =i=Zk.
For fixed j we obtain again from the Kronecker-Weyl thcorem

(1 u(j, x) =1+ o(1)D(x, k) l_(_{gtl-_at‘)_ X
log p;

Put

(12) Tady= £ WA_¥ .7,

po<p;=2t P
where in X, p, < p; = T= T(k,&) and in s T< p; 2% From (11) and (12)
we have for sufficiently large k

o

(13) T, <(1+o(1)) D(a,k) log(1 +4) x X 1/p, logp; < :—‘ D(a, k)x

j=k+1

since X1 | p;logp; converges. To estimate 2, observe that there are [xlog2/log p;]
powers of p; not exceeding 2% thus for every j and x

(14) u(j,x) < xlog2/logp;.
From (14) we have for sufficiently large T= T(k,¢,c)
(15) Y,<xlog2 X l,fp,-logpf-:% D(x, k)x

pi>T
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(10) follows from (12) (13) and (15). By a refinement of this method one could
perhaps prove that for infinitely many n

A(n,x) < c/logloglog n.
Using the classical result of Hoheisel [6]

a(x + x' 7% — n(x) > ex! 7%/ log x
we obtain by a simple computation that for all n
¢, /loglog n < A(n,x) < ¢, logloglog n.

IIT Sivasankaranarayana, Pillai and Szekeres proved that for 1 <1 <16 any
sequence of | consecutive integers always contains one which is relatively prime
to the others, but that this is in general not true for I =17, the integers 2184
<t 22200, giving the smallest counter example. Later A. Brauer and Pillai [1]
proved that for every I = 17 there are [/ consecutive integers no one of which is
relatively prime to all the others.

An integer n is said to have property P if any sequence of consecutive integers
which contains n also contains an integer which is relatively prime to all the
others. A well known theorem of Tchebicheff states that there always is a prime
between m and 2m and from this it easily follows that every prime has property P.
Some time ago I [5] proved that there are infinitely many composite numbers
which have property P. Denote in fact by u(n) the least prime factor of n.n clearly
has property P if there are primes p, and p, satisfying

(16) n—u(n) <p; <n,; n<p,<n-+ u(n).

One would expect that it is not difficult to give a simple direct proof that in-
finitely many composite numbers satisfy (16), but I did not succeed in this. In
fact T proved that there are infinitely many primes p for which p — 1 satisfies (16)
but the proof uses the Walfisz-Siegel theorem on primes in arithmetic progressions
and Brun’s method [5].

In fact T can prove the following

THEOREM. The lower density o, of the integers having property P exists
and is positive.

We will only give a brief outline of the proof, since it seems certain that the
density of the integers having property P exists and our method is unsuitable to
prove this fact; also our proof is probably unnecessarily complicated.

To prove our Theorem we need two lemmas.

LeMMA 1. For a sufficiently small ¢ >0 we have (p; =2 < p, <+ is the
sequence of consecutive primes):
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Zi(Pivt — P) > 4%
where in X, the summation is extended over those p,., < x for which
(17) elog x < pjyq—pi<(l —¢)log x.
It is easy to prove the Lemma by the methods used in [4]

LEMMA 2. Put Ny=Tl,., p and let 1 =a; <a, <+ <aypy,y=Ny—1 be
the integers relatively prime to N,. Then for sufficiently large k

22(Gi+: s {If) < Nk/k§
where in X, the summation is extended over those i's for which a;,,—a; = k| 2.

The Lemma can be deduced from [6] without any difficulty.

Now we can prove our Theorem. It is easy to see that if n does not have property
P then it is included in a unique maximal interval of consecutive integers no one of
which is relatively prime to the others. Denote these intervals of consecutive
integers by I,,, -+ where I, are the integers 2184, 2185 .- 2200. Let [, be the last
such interval which contains integers =< x. |I| denotes the length of the interval I.
To prove our Theorem it suffices to show

(18) Z |1 <x(1=cy)
ji=i1
Clearly none of the intervals I; contain any primes. To prove (18) it will suffice
to show that for some ¢; < ¢,

(19) 21| < ey —ex)x

where ¢, is the constant occuring in Lemma 1 and in X, the summation is extended
over those I;, 1 = j < r which are in the intervals (p;, p;,) satisfying (17).

Let T be sufficiently large and consider in the intervals (17) those integers all
whose prime factors are at least T. It easily follows from Lemma 1 and the Sieve
of Eratorthenes that the number of these integers not exceeding x is at least

(20) (1+o(eyx [T (1—1/p)>cyx/logT
p=T

Further these integers can clearly not be contained in intervals I; with |Ij| T
for otherwise they would be relatively prime to all the other integers in I;. Thus
to complete the proof of our Theorem we only have to show by (20) that for
sufficiently large T

@n E4|111<% cax[log T

where in X, the summation is extended over the I; in X, for which |I;| > T.
The I; in 2, satisfy
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(22) T<|I;| <(1—¢)log x.
Write
(23) Zy|=2 X1

where in 24 we have (r=0,1--)

(24) Fr<|L|SFMr

if 27"'T> (1 — e)logx, then the upper bound in (24) should be replaced by
(1 — e)log x. Now we show that for sufficiently large T and every »

(25) 2OV | < 2%l 2T

From (25) and (23) (21) easily follows for sufficiently large T. Thus to prove
our Theorem we only have to show (25). The integers in the I; of XY’ can not be
relatively prime to N,r+1.p (N, is the product of the primes not exceeding k)
therefore if /; is in an interval

(HNzr-i-] “ T (h‘ + I)NZ"*".T)
I; must lie in an interval (a; + uNjre1 7, @14 + UNyre1 1) Where
L= g < - <a¢,(N2”._n= N2r+1_7 —1

are the integers relatively prime to N,,+. .. Since 2 "y <l — ) log x, it follows
from the prime number theorem that N,...; = o(x), hence we easily obtain from
Lemma 2 for sufficiently large T

(r) ; x \
W r 1/2 (T 1/2
§ |1;] < ( [Nz--n.r]+ l)sz‘T/{?. T)'? < 2x/Q2'T)"/?,
thus (25) and hence our Theorem is proved. Unfortunately T can not handle the
]IJ-[ > log x and thus can not prove that the density of the integers having property
P exists.

CoroOLLARY. There are infinitely many composite integers satisfying (16).

By a«,> 0 there are infinitely many composite integers having property P,
and if there would be only a finite number of integers with property (1) then
for sufficiently large i in the set of integers p; < t < p;;; no one would be relatively
prime to the other, thus only a finite number of composite integers would have
property P. This contradiction proves the corollary.

Let us say that the primes have property P, the composite integers satisfying
(16) have property P,. By induction with respect to k we define: An integer n has
property P, if it does not have property P; for any j <k, but both intervals
(n,n + u(n)) and (n — u(n),n) contains an integer having one of the properties
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P;,0 £ j < k.1t is easy to see that for every k = 0 the integers having property P,

have property P too, and conversely every integer having property P has property
P, for some k = 0.

It is easy to show by induction with respect to k that the integers having
property P, have density 0, hence from a, > 0 we obtain that for every k there are
infinitely many integers having property Py.
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