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G(n ; 1) denotes a graph of n vertices and I edges. A set of edges is called
independent if no two of them have a vertex in common . GALLAi and I [11
proved that if
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1)(n-k+ 1) + k,- 1
2
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then G(n ; l) contains k independent edges . It is easy to see that the above result
is best possible since the complete graph of 2k-1 vertices and the graph of
vertices x1, . . ., xk-1 ; Yl, • • •, Yn-k+l and edges (x1 , xj), 1-

	

I ; (x1 , y),
1 i :!-< k - 1, 1-yj :!5 n - k + 1 clearly does not contain k independent edges .

By an r-graph o(r) we shall mean a graph whose basic elements are its
vertices and r-tuples ; for r = 2 we obtain the ordinary graphs . G (r) (n ; m) will
denote an r-graph of n vertices and m r-tuples. For r >- 2 these generalised graphs
have not yet been investigated very much. A set of r-tuples is called independent
if no two of them have a vertex in common .

f(n ; r, k) denotes the smallest integer so that every G( r)(n ; f(n ; r, k)) contains
k independent r-tuples . (1) implies that

(2)

	

f (n ; 2, k) = I +max
2k

2
1 ), (k-1)(n-k+1)+ (k_1 )

2 ),

It does not seem easy to determine f(n ; r, k) for r 2 and every k . For k = 2
Ko, RADO and I [21 proved that for n }2r

(3)

	

1(n ; r, 2) = n 1 + 1 .
1 r-1

The case n < 2r is trivial since then no two r-tuples are independent .
Denote by g(n ; r, k-1) the number of those r-tuples formed from the

elements x1 , . . ., x, each of which contain at least one of the elements
X1 , . . . , x,,-, . Clearly f (n ; r, k) > g(n ; r, k- 1) and a simple computation shows
that
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where the dash indicates that i runs from 1 to min (r, k- 1) .
Now we prove the following

THEOREM . For n,crk (c r is a constant which depends only on r)

f(n ; r, k) = 1 +g(n ; r, k- 1) .

The proof uses induction with respect to k . For k = 2 the result is known
121 . We assume that it holds for k- 1 and prove it for k .

Let n ~- crk and consider an arbitrary G( r )(n ; 1 +g(n ; r, k- 1)) . Denote by
v(xt ) the number of r-tuples in our G(r)(n ; 1 +g(n ; r, k- 1)) which contain xt .
Without loss of generality we can assume that max 11(x1 ) = v(xl) . We distin-
guish two cases. Assume first

	

1-i-n

(5)

	

1 "
(x 1 ) `

1+g(n ;r,k-1)

(k - 1)r

and let R 1 ,

	

Rt be a maximal system of independent r-tuples of our G (r) .
We show

(6)

	

l - k.

If (6) would be false our r-tuples R 1 , . . ., R t would contain at most (k-1)r
vertices and by (5) the number of r-tuples containing any of these vertices
is less than

I +g(n ; r, k- 1) .

Thus our G( r) ( n ; I +g(n ; r, k- 1)) contains an Rt+1 which is independent of all
the Rt , 1 s i l, which contradicts the max imality of R1 , . . . , Rt , hence l < k
leads to a contradiction, which proves (6) and disposes of the first case .

Now we consider the second case, that is, we assume

(7)

	

11(x1 I z
l+g(n ;r,k-1)

(k - 1)r

Consider now the r-graph G( r ) whose vertices are x2, . . . , xn and whose
r-tuples are those r-tuples of our G(r) (n ; 1 +g(n ; r, k- 1)) which do not contain
x1 . The number of r-tuples of Gi r) is clearly at least

í(8)

	

1 +g(n ; r, k- I)- n-1 , ` 1 +g(n - 1, r, k- 1),
r- 11

since there are at most n - 1 r-tuples containing x1. Thus by our induction
(r-1

hypothesis G~i~ contains at least k - 1 independent r-tuples R1 , Rk_ 1 •
The proof of our Theorem will be complete if we succeed to show that there
is an r-tuple of our G(r)(n ; I +g(n ; r, k- 1)) containing x1 which does not con-
tain any of the (k- 1)r vertices of R1 , . . ., Rk_1 . To see this observe that the

number of r-tuples containing x1 and xt is at most n 21 , and therefore the
~r-2)

number of r-tuples containing x, and one of the vertices of R1 , . . ., R k_ 1 is at
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most (k- 1)r
n-2

By (7) and (4) we obtain by a simple computation that
r-2

for n > c,k
'

(k - I)r n-2 -< v(x1) ;
r-2

hence there is an r-tuple of our G (r) (n ; I +g(n ; r, k - 1)) containing xI which is
disjoint from RI , . . ., R,_ I, as stated . This completes the proof of our
theorem .

It is not impossible that

(9)

	

f(n ; r, k) = I +max
I

rk
1), g(n

; r, k 1) ~

r

For r = 2 (9) is implied by (1) and for k = 2 (9) is proved in [2], but the general
case seems elusive .
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