Problems and results on diophantine
approximations *

by
P. Erdos

The older literature on this subject (until about 1935) is
treated in the excellent book of Koksma [1]. The more recent
literature is discussed in a very interesting paper of Cigler and
Helmberg [2]. Unlike the above authors I by no means aim to
cover the literature completely and will mostly discuss only
problems on which T myself worked thus a more exact title would
have been “Problems and results on diophantine approximation
which have interested me’. There will be some overlap with my
paper “On unsolved problems” [3]. First I discuss some questions
on inequalities of distribution and on uniform distribution.

I. Let @;,a,, -+ be an infinite sequence of real numbers in the
interval (0, 1). Denote by N, (a, b) the number of #,; satisfying

a=x,=b, 1=1=n.
We say that @, a,,... is uniformly distributed if for every
0=a<b=1
N,(a, b
(1) i 2% g
T=00 n

The classical result of Weyl (see [1]) states that the necessary
and sufficient condition that the sequence @, ... should be
uniformly distributed is that for every integer &, 1 =k <

i 3
(2) lim — ¥ &% = o,

n=oo N j=1

Here I would like to ask a question which I have not yet answered
though it is perhaps very simple. Put

Ak = lim 2rikz;

¥

n
€
=1
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A can be infinite, but if #; = ja (mod 1) then A, is finite for
every k. Is it true that lim sup 4, = oo? I expect that the answer
is yes. It is easy to see that if B, is the least upper bound of
I3, ™% then imy_o By = .
The discrepancy of x,..., @, we define as follows: (This notion
as far as I know is due to van der Corput)
(3) D(xy, .. 2,)= sup |N,(a,b)—(b—a)n|.
0=g<b=1
Equidistribution is equivalent to D(xy, ..., @,) = o(rn). Van der
Corput conjectured and Mrs. Ardenne-Ehrenfest proved the
beautiful result that for every infinite sequence a;, a,, ..
lim sup D(ay, . .., ,) = 0.

In fact Mrs. Ardenne-Ehrenfest showed that for infinitely many n
D(zy, ...a,) > cloglog nflog log log n.
Roth sharpened this result by showing that for infinitely many n
D(xy, . .. 2,) > c(log n)t.

One can express the theorem of Roth also in the following finite
form: There is an absolute constant ¢ so that to every sequence
2y, . .. &, thereis an m and an & < 1 so that

|N,.(0, &) —am| > ¢(log n)%.

Perhaps in Roth’s Theorem ¢(log n)* can be replaced by ¢ log n,
this if true is known to be best possible [4].

I would like to ask a few related questions.

Does there exist an infinite sequence @; < @, < ... so that for
every 0 =a <b=1
(4) lim sup N, (a, b) < «o?
Denote by f(a, b) the upper limit and by F(a, b) the upper bound
of N,(a, b). The fact that D(a, ..., a,) is unbounded only implies
that F(a, b) cannot be a bounded function of ¢ and b). On the
other hand it is not clear to me why f(a, b) could not be a bounded
funetion of a and b, though this seems very unlikely.

Let |3,/ =1, 1 =» < 0 be an infinite sequence of complex
numbers on the unit circle. Is it true that

g
lim sup max J] [z—z,| = oo?

n=00 |gl=1 =1
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I would guess that the answer is yes. If this is the case it would
be of interest to estimate how fast max,_,,-, 4,, (4, = max_,
TT.., |2—=2,|) must tend to infinity.

Let w,, . . . w, be any n points on the surface of the unit sphere.
Let C be any spherical eap and denote by

(4) D(wy, ..., w,) = max(N(C)—na¢), D, = min D(w,,...,w,)
c Ty vy W,

1 n

where N(C) denotes the number of w’s which are in C and o¢
is the ratio of the surface of C with the surface of the sphere,
the maximum is to be taken with respect to all spherical caps.
One would expect that D, is an unbounded function of n, in other
words: n points cannot be distributed too uniformly on the surface
of the sphere (the situation is of course quite different on the
circle). Perhaps this can be proved by the method of Roth, who
settles in his paper the analogous question for the square [4].

Let z;,%, ... be an infinite sequence of points in the plane.
Denote by N(z,, r) the number of 2’s in the interior of the circle
of center z, and radius r. Put

f(r) = max(N(z, r)—mnr?)

where the maximum is to be taken over all circles of radius 7.
Probably f(r) is unbounded for every choice of the z’s and one
would like to estimate how fast f(r) or F(r) = maxy<p<, f(R)
tends to infinity. The method of Roth will perhaps help here
too [4].

Let f(n) be an arbitrary number theoretic function which only
assumes the values +1. Is it true that to every ¢; there exists
a d and an m so that

g(m, d) = >0t

;glf(k, d)

It is perhaps even true that

max g(m, d) > ¢, - log n.
d, m
dm = n.

The well known Theorem of van der Waerden [5] asserts that
for every k there exists an arithmetic progression a, a+d, ...,
a-+-(k—1)d for which f(a) = ... = f(a+(k—1)d).

Let finally 1 = @, = ... = a, be n arbitrary integers. Denote

n
M(ay, ... a,) = max [] |1 —2%, f(n) = min M(a,, . .., a,)
z/=1 i=1
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where the minimum is taken over all sequences a,, .. ., a,. Szekeres
and I [6] proved
lim f(n)V" =1, f(n) = 4/2n.

Recently Atkinson [7] proved f(n) < exp(nf log n) (exp z = €*).
The lower bound has not yet been improved, though we are sure
that this is possible, undoubtedly f(n) > n* for every k and
n > ny(k). Atkinson’s result is perhaps not far from being best
possible.

Weyl’s criterion [2] does not give an estimation of the discrep-
ancy of a sequence. Turan and I [8] proved, sharpening a previous
result of van der Corput and Koksma [1] the following result:
Assume that for every k satisfying 1 < &k =< m we have

lsel = | 2 e < (k).

J=1

Then for a certain absolute constant C

(5) D(@y, .. y) < C

e+ 2 e )

Koksma and Sziisz independently extended this result for the
r-dimensional case [9].

An interesting special case of our Theorem is obtained if we
assume

(6) Isx| < kA for all k < nl/A,

From (5) we obtain that (6) implies

(7) Dy 0o opy) < EptiiHl

We could not decide whether the error term in (7) is best possible.
Another result on the discrepancy of points in the complex

plane due to Turdn and myself states as follows [10]: Let f(z) =
ay+- ... +a,z" be a polynomial, denote its roots by

z, = e 1 =< r = n, M = max|f(z)|.
z|=1
Then for 0 = « < § = 27 we have

8) s 1

|esp, =4 23

nlogﬂa’)i

n <16(
a, a,

It would be interesting to investigate whether (8) remains true
if » denotes the number of non vanishing terms of the polynomial
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a,t+ ... ta,z (orif (8) does not remain true now does it have
to be modified).

The following questions have as far as T know not yet been
investigated. Let wy,...., w, be n points on the unit sphere
chosen in such a way that (w;—w, denotes the distance of w,
and w;)

=
1=i<i=n
is maximal. Is it then true that D, = o(n)? (see (4)). Can one
improve this estimate?

An analogous question would be the following: Put
(9) A, = min max ] w—w;

WyyeonyWly W =1
where the maximum is taken over all points w of the unit sphere
and wy, ...w, varies over all n-tuplets of points on the unit
sphere. Two questions can be asked. First of all let w,, ..., w,
be one of the sets for which there is equality in (9). Is it true that
for this set D, = o(n)? Secondly assume that max, []/_, w—w,
is not much larger than 4, how can one estimate D, ?

II. Now we discuss some questions on uniform distribution.
It follows early from (2) that for every &k and every irrational
number « (nfa) = nfa—[n*a] is uniformly distributed, this
beautiful and important result was first proved by Weyl and
Hardy-Littlewood [1]. For general sequences n, << n, << ... it is
very difficult to decide whether (n,«) is uniformly distributed e.g.
Vinogradoff [11] only recently proved that (p,«) is uniformly
distributed for every irrational a(p, =2 <p, <... is the
sequence of consecutive primes). Weyl proved that for every
sequence of integers n; << n, << and for almost all « (n,u«) is
uniformly distributed. Sharpening previous results Cassels and
independently and simultaneously Koksma and I [12] proved
that for almost all « the discrepancy of @, = (n,o) satisfies for
every £ > 0

(10) D(xy, . . ., my) = o(N¥(log N )5/2),

Koksma and I use (5), Cassels’s method is more elementary.
It would be very interesting to investigate to what extent (10)
can be improved. Possible o(N¥(log N)*®*¢) can be replaced by
a(N¥(loglog N)¢) for a certain constant ¢. In the special case
where the sequence n; is lacunary i.e. where it satisfies n,./n; >
¢ > 1. Gal and I proved this, but our proof which is similar to the
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one we used to establish the law of the iterated logarithm [13]
for lacunary sequences n;, was not published. It is well known and
has been perhaps first obtained by Kac and Steinhaus that for
lacunary sequences (n;o) behaves as if they would be independent.
Thus our result with G4l gives no indication what will happen if
the condition n,,/n; > ¢ > 1 is dropped.

The following beautiful conjecture is due to Khintchine [14]
Let E be measurable subset of (0, 1) of measure m(E). Denote
fale)= 3 1

1=kz=n
where the summation is extended over those k’s for which (ke)
is in E. Then for almost all « and every E

(11) lim f,(a)/n = m(E).
Presumably the same result holds if u; << w, < .. .is any sequence

of integers and f,(z) denotes the number of indices & for which
(nio) is in E. This conjecture of Khintchine is very deep, directly
or indirectly it inspired several papers. More generally one could
ask the following que*stion Let n; < ... be an infinite sequence
of integers and f(x) is any Lebesgue 111tegrable function in (0, 1).
Under what conditions on f(x) and on the sequence n, < ... is
it true that for almost all « ( (o) = no—[mya])

(12) lim 3 () = [ o
Raikov proved that if n, = &%, (¢ > 1 integer) then (12) holds
for every integrable f(z). A simple proof of this result using
ergodic theory was given by F. Riesz [15].

Let nyy > (14-¢)ny, (c > 0) and let f(@) be in L, and let ¢,(f)
be the n-th partial sum of the Fourier series of f(x). Sharpening a
previous result of Kae, Salem and Zygmund I proved that if

1
13 xr)— 2)))de = 0 (7)
w | @) T
then (12) holds [16].
Further I constructed [16] a lacunary sequence n; < n, << .
and a function f(2) which is in L, for every p and for which (12)
does not hold. In fact for our f(x) we have for almost all «

(14) llm sup— Z)‘( (npx)) = oo,

=00
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in fact for our f(2) we have for every ¢ > 0 and almost all «

(15) hm sup

1 N
N(]owlog Z\y)%—a kgl f( (ﬂ-};m)) = 0

On the other hand I can show that if f(x) is in L, and {n,} is any
lacunary sequence then for almost all « and every ¢ > 0

(16) ((mga)) = 0.

Im Nog NP 21
There is a considerable gap between (15) and (16). I think (15)
is closer to the truth but I cannot prove this. I would also think
that (13) remains true if o(1/(loglogn)*™) is replaced by
0(1/(log log log n)°) for a certain ¢ > 0, but I have not been able
to decide this. It is possible that (12) holds for all bounded func-
tions and every lacunary sequence {n,}. It seems impossible to
modify my example so that it should become a bounded function.

My lacunary sequence for which (12) does not hold is very
special, it would be interesting to try to determine for what
lacunary sequences (12) hold for all f(z) in L, (or in L;) and for
which lacunary sequences this is not the case, e.g. let @ > 1 be
any real number does (12) hold for the sequence [¢*]? (If @ is an
integer this is the quoted result of Raikov).

Koksma [17] proved the following result: Let f(z) be in L, and
let {c;} be the sequence of its Fourier coefficients. Assume that

i 1
a2 <
d_.kd

k=]
Then for almost all «

m - 3 () = | f2)ie

1
(17) —
o T i
I was unable to find an f(z) in L, or even in L, for which (17) does
not hold.
IIT. A sequence 2,, @, . .. in the interval (0, 1) is said to be
well distributed if to every ¢ > 0 there exists a k, = k, (¢) so that
for every k> kyynm>0and 0 Za<b =1

[N, nyze (@ b)n—(b—a)| <e

where N, .z (a, b) denotes the number of @,’s, n <m =n-+k in
the interval (a, b). As far as I know the notion of well distrib-
uted sequences was introduced by Hlawka and Petersen [18]. Let
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Ny q/My > A = 1, in contrast to the result of Weyl I proved that
for almost all « the sequence (n,«) is not well distributed. If
Ppq [T — 0 it is not difficult to show that the values of « for
which (n,a) is well distributed has the power of the continuum.
Further I can prove that there is an irrational number o for which
(p,2) is not well distributed (compare [11]). The proof of these
results is not yet published. It seems very probable that (p,«) is
never well distributed (i.e. for no value of «) but I have not been
able to show this.

IV. Finally I would like to discuss some results on diophantine
approximations. Khintchine [19] proved that if f(g) is monotone
decreasing then the condition

(18) 310 _ o

is necessary and sufficient that for almost all « the inequality

p|_ 14
" Ao

q ¢*
should have infinitely many solutions in integers p and ¢. It is
easy to see that if (18) does not hold (i.e. if 332, f(¢)/g < o)
then without any assumption of monotonicity on f(g) it follows
that for almost all « (19) has only a finite number of solutions.
The question now remains: Does (18) imply (19) without any
further assumptions on f(¢)? Duffin and Schaeffer and Cassels
deduced (19) from (18) under much weaker assumptions then
monotonicity of f(¢), but they both showed (18) does not imply
(19) without some condition on f(g) [20].

In his paper [20] Cassels introduced a property of sequences which
seems to me to be of interest in itself. Let n, << n, << ... be an
infinite sequence of integers. Denote by ¢(ny, ..., n._4; n;) the
number of integers 1 = a = m,;, for which a/n; # b/n, for every
1 =4 < k. Clearly

(19)

PRy« ooy Np_gs M) = @(0g).

Cassels calls the sequence {n,} a > sequence if

I veen My g3 Ny
(20) lim inf (E S ein: L n) > 0.

k=00 i=1 n;

Cassels shows that there are sequences which are not Y-sequences

! Petersen informs me that this was known to him.
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(i.e. for which the lim inf. in (20) is 0). I have not succeeded to
decide the question whether there is a sequence n; << n, < ---
for which

(21) lim

k=00

(% i P(Rys oo o My} ’n\c)) —o.

i=1 "y
I would guess that such a sequence does not exist. I can only prove
that

lim fP(’n-l, el n!’—l; nz‘l

i=00 ni

cannot be 0. In fact I will outline the proof of a somewhat stronger
result: assume that

(22) lim inf @(ny, ..., nq; 0;) 0, =0
=00

then

(23) lim sup g(ny, ..., n,_q; n;)n; = 1.
i=00

Assume that (22) holds. It immediately follows from
@(Ryy ..oy My_y3 ;) = @(n;) that there must be arbitrarily large
primes p; so that n, = 0 (mod p,) for suitable values of i. Assume
now that m, is the smallest n; for which n, = 0 (mod p;). Then
if 1 =a<n,, a0 (mod p,) clearly implies a/n; = b/n; for
1 =g <k oreng,...,n_q;n)=(1—1/p,;)n,, which implies (23).

Cassels shows [20] that the necessary and sufficient condition
that n, << n, << ... should have the property that the divergence
of 3%, f(ng)/n;, implies that for almost all a

_ fn)

n2

My,
m_ s
Ty,

has infinitely many solutions, is that n, < n, < ... should be
a »-sequence. Cassels also shows that every sequence n,,, >
(14-¢)n, (e > 0) is a D-sequence. It seems likely that a weaker
condition will imply that a sequence is a Y-sequence, but as far
as I know no such condition is known.

Duffin and Schaeffer [20] made the following beautiful con-
jecture: Let ¢,, 1 = ¢ < o be an arbitrary sequence of non-
negative numbers. The necessary and sufficient condition that
for almost all « the inequality
| P‘ =
el T



[10] Problems and results on diophantine approximations 61
should have infinitely many solutions in integers (p, g) = 1 is that

eq (q)
1 q

M2

q

diverges. (g¢(g) is Euler’s ¢ function). It is easy to prove the
necessity, the real difficulty is to prove the sufficiency.

I proved the following special case of this conjecture. Let ¢ > 0
be fixed and let ¢, = 0 or ¢, = &. The necessary and sufficient
condition that for almost all e.

p &g
o— — <_9:(r )=1
i 9\ q- P-4

has infinitely many solutions is that >3, e, ¢(q)/¢* diverges.
The proof is very complicated and has not yet been published.
My proof in faect gives the following slightly sharper result: Let
¢, = 0 be a bounded sequence. Then the necessary and sufficient
condition that for almost all «,

b
—,(pg)=1
q

has infinitely many solutions is that 372, &,¢(q)f¢* diverges.
Due to the great technical difficulties of the proof I am not at
present certain whether my method gives the general conjecture
of Duffin-Schaeffer.

My result immediately implies the following theorem: Let
, < My < ... be an arbitrary infinite sequence of integers. The
necessary and sufficient condition that for almost all « infinitely
many of the n, should be denominators of the convergents of the
regular umtmued fraction of « is that X%, ¢(n;)/n} diverges.
(i.e. it is well known that if |a—m,/n,| < 1/2n3, (m;, n;) = 1 then
m,/n; are convergent of «). Hartman and Sziisz proved a special
case of the above result [21]. Finally I would like to state four
unrelated problems on diophantine approximation.

1. Hecke and Ostrowski [22] proved the following theorem:
Let « be an irrational number and denote by N, (%, v) the number
of integers 1 = m = n for which

0=u=(ma)<<v=1
Then if both # and v are of the form (k) then

(24) N, (u, v) = n(v—u)+0(1)
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Sziisz and I conjectured the converse of this theorem, i.e. if (24)
holds then w = (k;a), v = (ky2), unfortunately we had not been
able to make any progress with this conjecture.

2. Denote by S(N, 4, ¢) the measure of those « in (0, 1) for
which

A

€
<?,(Z',y)=1

o— —

Y

is solvable for some y satisfying N =< y < ¢N.
Sziisz, Turdn and I conjectured that [23]

lim S(N, 4, ¢) = f(4, ¢)
N=co
exists. What is its explicit form?

In our paper [23] we only solved a very special case of this
problem. Recently Kesten [24] strengthened our results, but the
general problem is still unsolved.

3. Consider 0 < o << 1

1 n
fla,n) = @%gl ((kx)—1).

Is it true that f(x, ») has an asymptotic distribution function?
In other words is it true that there is a non-decreasing function
gle), g(—ow) =0, g(-+o) =1, so that if m[f(«x, n), ¢] denotes
the measure of the set in o for which f(e,n) =e¢ then
lim m[f(«, n), ¢] = g(e). Probably g(¢) will be a strictly in-
creasing continuous function. Important recent contributions to
this problem have recently been made by Kesten, [25] but as far
as I know it is not yet completely solved.

4. The following interesting problem is due to LeVeque: Let
a; < a, < ...bean infinite sequence tending to infinity satisfying
a;.q/a; 1. Let a; = 2, < a,,,. Put

2,—a;
yn:___'_soéyn<1'

Qi

We say that the sequence #,, 1 =< n < o0 is uniformly distributed

mod a, ay, ... if y,, 1 = n < oo is uniformly distributed. Is it
true that for almost all « the sequence na, 1 =n < oo is uniformly
distributed mod a,, ...? LeVeque proved this in some special

cases [26].
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Added in proof: Since this paper was written the following
papers were published on the problem of LeVeque:

H. Davenport, P. Erdaos and W. J. LeVeque, On Weyl's criterion
for uniform distribution, Michigan Math. Journal 10 (1963),
311 —314;

H. Davenport and W. J. LeVeque, Uniform distribution rela-
tive to a fixed sequence, ibid 10 (1963), 315—319 and

P. Erdés and II. Davenport, Publ. Math. Inst. Hung. Acad.
(1963).
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