ON TWO PROBLEMS OF S. MARCUS, CONCERNING
FUNCTIONS WITH THE DARBOUX PROPERTY

BY
P. ERDOS
(Budapest)

I. In [1], S. Marcus has proved the following theorem :

“Let f be a continuous real valued function on a real interval L.
Suppose that fassumes a maximum at each point of an everywhere dense
subset in I. Then, for each interval J I we have one of the following
two possibilities : 1° There exists an interval K J where f is constant;
2° There exists a real set A(J) of the first Baire-category with respect to
f(J), such that J N {z; f(x)=1} is not countable for each t e f(J) — A(J).”

The following problem is proposed in [1], p. 268:

Does the above theorem remain valid if instead ‘‘a continuous real
valued function” one takes ‘“a real valued function with the Darboux
property’’ ?

We shall show that the answer to this problem is negative.

Let Q, be the first ordinal number of cardinal ¢. Let 4, B and
C.1 <2 < Q. disjoint, denumerable and everywhere dense sets of
real numbers, such that

R=AU BU(UC,),
where R is the get of all real numbers. Let

{r.}, 1 <a < Q
be a wellorder of the set R (0,1). We define the function f as follows :

1, if ze4d
fle) = {0, it zeB
x,, if ze(,.
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This function takes on in every interval each value belonging to [0,1];
thus, f has the Darboux property. On the other side, the condition 1° of
the above theorem is not fulfilled, rincé f is constant in no interval; the
condition 2° is also not fulfilled, since the set {«; f(x) =1} is denumerable
for each te[0,1].

2. It is known that every real function f of a real variable is the
sum of two functions g and k, having the Darboux property ([4], [2],
[3]). 8. Marcus posed to me the following question: If f is Lebesgue
(Borel) measurable, is it possible to choose ¢ and h Lebesgue (Borel) mea-
surable and with the Darboux property, such that f = ¢ + h? We shall
show that the answer is affirmative.

To see this, let S, and S, be two disjoint I, sets of measure zero,
which have power ¢ in each interval. If x is not in 8, U 8,, put g(z) = 0,
h(z)= f(x). On S, we define g(z) in such a way that, for every interval
(a, b), g(x) assumes on 8§, () (a, b) every value in (— co, co); this can
clearly be done, since S, ) (@, b) has power ¢ for every interval (a, b).

The function h is defined as follows. If z< 8, then h(z) = f(o) —
— glz). On 8,, h(2) is defined so that on 8, N (a, b) it assumes every
value in (—oo, oo) (for every interval (a, b)) and g(z) = f(z) — h(x).

Clearly f(z) = g(z) -+ h(x) for every x and both ¢ and h have the
Darboux property. If fis Lebesgue measurable, clearly the same holds for
g and h, since f(#)=h(x) and g(x) = 0 everywhere except on a set of
measure zero.

It is easy to see that, if fis Borel measurable, ¢ and & can also be
defined to be Borel measurable.
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