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L. Moser [3] recently gave a very simple proof that
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g(m) > 2m ,
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has no solutions . In the present note we shall first of all prove

that for a > n , ( 2a) t~2n) , which by the fact that there is a2
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prime p satisfying n < p < 2n immediately implies that
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has no solutions . It is easy to see on the other hand that
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has infinitely many non-trivial solutions . I do not know if (3)
is solvable if a, = (3, = 1 .

	

I will discuss some further divisibility

and mention some unsolved problems .

THEOREM . Denote by g(m) the smallest integer n > m
(Zml

	

(2n1
m

	

ni For all m we have
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and for m > m
0

(5)

	

m1+c < g(m) < (2 m) log m/log 2

for a certain absolute constant c > 0 .

First we prove (4) . Put n = m+k, 0 < k < m ; then

(6)	n
1 2m

case these exceptions cannot
2m> 3 n> 7

	

Also, since n

2k < 23 ; hence m+k = n >

Faulkner there is a prime

Let m+j, 0 < j < k be the
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k

	

2
ii (2m+i)/ IT (m+i)

By a simple calculation we can show that for n < 11, (6) is never
an integer. Henceforth we can thus assume n > 12 . It is well
known that for n > 12 there always is a prime p satisfying
2

	

2n
3

n < p < n . Thus if m <
3

, ( 6) cannot be an integer since
2the denominator is divisible by p and the numerator only by p .

Thus we can assume

n>12,

	

m> 23

k
Miss Faulkner [2] recently proved that II (m+i) always has

i=1
a prime factor q > 2k if m + k > P , where P is the least
prime > 2k, except if k=2, m=7 or k=3, m=7 . In our

q

occur since n > 11,

>11 and m> 23, k<3 or

P. Thus by the theorem of Miss
k
II
i=1

unique value for which m+j = 0(mod q)

> 2k which divides (m+i) .

and assume q a (m+ j) (i . e . , gal(m+j), qa+1

	

(m+j)) .

	

Since
q > 2k, 2m+2j is the only integer m of the sequence 2m+i,

2k
0 < i < 2k, which is a multiple of q .

	

Hence qa I I II (2m+i),
i=1
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g2al k
II (m-.,- i) 2 , or (6) cannot be an integer, which proves (4) .

i=1

It can easily be shown that g(m) > Zm for m > i
(i. e . , g(m) = Zm holds only for m = 1) .

Now we prove the first inequality of (5) . It is well known

and evident that if 2k + 1 < (Zn) 1/2, then no prime p satisfying

2k+1 < p < k divides ( Zn ) .

	

Further, it follows from the

classical theorem of Hoheisel [3] that if E > 0 is sufficiently

small and k < n E , n > n 0 (E ), then there always is a prime

satisfying

2n

	

n( 7 )

	

21-1+1 < p < k .

Now if c = c(E) is sufficiently small and 5m < n < m1+c then

there clearly is a k < n E for which

m<2k+1 <L<Zm,

or

P1 mi
which proves g(m) > m 1+c (if 2m < n < 2m then the interval

3

	

2m1 1

	

n I(-n, 2m) contains a prime, thus

It seems very likely that for every k and m >
g(m) > m~, but this is perhaps not easy to prove . It
likely that to every e > C there is an n 0 so that for

Em > n There is a prime p, m < p < Zm, such that

This would of course imply g(m) > mk .
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Now we prove the second inequality of (5) . L . Moser [4]

observed that

mbut this only gives g(m) < c 1 .

We will only outline the proof of the upper bound for g(m) .
In fact we shall show a stronger result than (5) . Let m > m0(e )

log m/tog 2and x > m

	

Then the number of integers n < x

for which 12m) + ~ 2n) is less than E x .m

	

n

It is well known that if

k
1n = E a .p ,

i=0 1

is the p-ary expansion of n, then pr d 2
n
n) , where
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r =

	

E

	

1 .
a .>p/2
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In other words p -f (2n) if and only if all the a . are < p/2 .n

	

1
Thus by a simple calculation the number of integers n < k+ 1p

for which p

	

2n ) equals [P]k+1

	

Hence if x > (2m)log m/log 2

and p< 2m then the number of integers n < x for which
2np -~- f
n ) is less than1

x

	

x
2log m/log 2

	

m(10)

I m)
I ~ 2n ) if n= j '-mm)

Further, a simple combinatorial argument shows that the

number of integers n < pk+1 for which pr H- ( 2n) equalsn

r-1[~~k+1 E 'k+1) < [E]k+1(k+1)r .
i=0
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Hence by (11) we obtain by a simple computation, the
details of which we suppress, that the number of integers
n< x (x> (2m) log m/log 2 ) for which

pr t ( 2n )

	

p < (2m)1 /rn

	

'

is also less than x (as in (10)) . Now it is well known andm
easy to prove that if pr I i m ) then pr < 2m (or p < (2m)1 /r )

Hence from (10) the number of integers n < x for which

~2m~
.
~2nj

m

	

n

is less than

irr(2m)x

		

<exm

for m > m0 (e ), which completes the proof of (5) .

I do not know to what extent our upper bound for g(m)
can be improved .

I have not been able to show that there is an infinite
2ni

	

2ntsequence n 1 < n2 < . . . so that for every i < j,

	

n

	

n ji

	

\

	

j
but it seems certain that such a sequence exists [11 .
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