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ON SOME DIVISIBILITY PROPERTIES OF [ ;‘)
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(received March 13, 1964)

L. Moser [3] recently gave a very simple proof that
(1) (2:‘1) _(Za) [2b)
nl "1 a b
has no solutions. In the present note we shall first of all prove
that for a >I—?j ; (23) ‘f‘[an} » which by the fact that there is a
a I
prime p satisfying n < p<2n immediately implies that

2a \e,

2 r
(2) (“]: o HY o a >4, n>a. >1
n _ a 1= » Mo

i=1 i

has no solutions. It is easy to see on the other hand that
2a \a, T 2b \B,
i

r
(3) e Hi o Y s, BSd

has infinitely many non-~trivial solutions. I do not know if (3)
is solvable if o, =f, =1. I will discuss some further divisibility
i i

properties of [

and mention some unsolved problems.

THEOREM. Denote by g(m) the smallest integer n>m

(=]

. Zm Zn
for which ( ) |( 1 . For all m we have
m ni
(4) g{m) > 2m ,
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and for m>m

1+

(5) m g glm) < (2m) 08 T/108?

for a certain absolute constant ¢ > 0 .

First we prove (4). Put n=m+k, 0 <k<m ; then

(2‘;] 2k / i |2
(6) = @mt) /| T (me)
[ m] i=1 {=1

By a simple calculation we can show that for n < 11, (6) is never
an integer. Henceforth we can thus assume n > 12. It is well
known that for n > 12 there always is a prime p satisfying

Z 2n

30 <p<n. Thusif m5—3 , (6) cannot be an integer since
the denominator is divisible by p and the numerator only by p.

Thus we can assume

Miss Faulkner [2] recently proved that II (m+i) always has
i=1

a prime factor g > 2k if m+ k> P, where P is the least

prime > 2k, exceptif k=2, m=7 or k=3, m=7. Inour

case these exceptions cannot occur since n > 11,

2 = : 2n n

m>3n> 7. Also, since n > 11 and m>r-3—, k<§ or

; hence mt+k=n>P. Thus by the theorem of Miss
k

Faulkner there is a prime g > 2k which divides I (m+i) .

=4
Let m+j, 0 < j< k be the unique value for which m+j = 0(mod q)

2n
2k < —
3

and assume qQH(erj} (i-e., qQ](m+j], qa+1 + (m+j)). Since

q > 2k, 2m+2j is the only integer m of the sequence 2m+i,
2k

0 <i< 2k, whichis a multiple of q. Hence q"|| T (2m+i),
i=1
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k
2 2
q a| M (m+i) , or (6) cannot be an integer, which proves (4).

i=1

It can easily be shown that g(m) >2m for m > 1,
(i.e., g(m)=2m holds only for m =1).

Now we prove the first inequality of (5). It is well known

1/2
and evident that if 2k + 1 < (2n) / , then no prime p satisiying
2 2
_Zkii <p <Tr: divides [ ::) . Further, it follows from the

classical theorem of Hoheisel [3] that if ¢ > 0 is sufficiently
small and k < n8 , n> no(s}, then there always is a prime

satisfying

n
(7) Zk+i<p<k'

-

1¥e
Now if ¢ =c(e) is sufficiently small and %m <n<m then

there clearly isa k< n° for which

m<-—£n— <-I-1-< Zm
2k+1  k :

or

TIPS (W

n

5
which proves g(m) > m1+c (if 2m < n < Em then the interval

= &
(zn,2m) contains a prime, thus {Zm) ¥ [ n) 32
. m n

It seems very likely that for every k and m > mo(k],

k
gm) > m', but this is perhaps not easy to prove. It seems
likely that to every € > 0 there is an n, so that for every

€
m>n there is a prime p, m < p< 2m, such that p T(Zﬂ»
ni

This would of course imply g(m) > m
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Now we prove the second inequality of (5). L. Moser [4]

2 2 2 2
observed that l m) | [ ") if n= ( m) -1 (i.e.(n+1) |( n) )
m n m n

m
but this only gives g(m) < <y

We will only outline the proof of the upper bound for g(m).
In fact we shall show a stronger result than (5). Let m > mo{s}

log m/log 2

and x> m Then the number of integers n < x

2
for which (Zm} ‘}'( n) is less than € x .
m n

It is well known that if

k
n= Z ap, Ofai«:p,

; . r 2n
is the p-ary expansion of n, then p []{ n), where

(8) r= Z B
aizpfz

2
In other words p 1 [ ;) if and only if all the a, are < p/2 .

k+1
Thus by a simple calculation the number of integers n< p

k+1 log m/log 2

2
for which p‘f'[ ::‘ equals [g] . Hence if x> (2m)

and p<Z2m then the number of integers n < x for which

2
P -i’( n) is less than
n

x x
10 S I
(10) Zlog m/log 2 m

Further, a simple combinatorial argument shows that the

kt1 2
number of integers n < p for which p. -{—( ") equals
Il

-1
- (k-f—i] k+1
1

(11) [Ep]}w1 (kt1)" .

i=0

<[7]
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Hence by (11) we obtain by a simple computation, the
details of which we suppress, that the number of integers

log m/log 2

n<x(x>(2m) ) for which

(%), peem!T

is also less than = (as in (10)). Now it is well known and

2
easy to prove that if pr [ [ ;:) then pr <2m (or p< {Zm}“r)‘

Hence from (10) the number of integers n < x for which
(Zm] _F__ (Zn]
m n
is less than

m(2m)
<ex
m

X
for m > mo(:-:), which completes the proof of (5).

I do not know to what extent our upper bound for g(m)
can be improved.

I have not been able to show that there is an infinite
2n, 2n,

. . 1
sequence n, < n, < ... so that for every 1i<j, '1" ]
1 2 n, n,
= J
but it seems certain that such a sequence exists [1].
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