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ON AN HXTREMNAL PROBLEM IN GRAPH THEORY
By

P ERDOS (BUDAPEST)

In the present paper G(n; ) denotes a graph of » vertices and 1

edges, I, — the complete graph of p vertices, i. o, G(-p; (";]), K (B vos

, py) — the complete r-chromatic graph with p,; vertices of the i-th
colour i which every two vertices of different colour are adjacent.

Vertices of our graphs will be denoted by @, ., ..., edges by (2, y).
The valence v(r) of » is the number of edges adjacent to .

Denote by m(n; p) the smallest integer so that every @ (n; m(n; p))
contains a K,. Turan [6] (comp. also [7]) determined m(n; p) and also
showed that the only G(n-; '.'H(ii;-p)—-—l) which contains no K, is K(mq, ...
voiy My_y)y where

p—1

_\‘ mp =n and oy = [—-ﬂ ] ur [ i ]-r L.
= =1 p—d

Dirac [1] and I (independently) proved that every @ (n;m(n;p))
containg a I, , from which one edge is missing. In fact, the following
stronger result also holds:

There is a constant ¢, so that every G(n;m(n;p)) contains a K,
and e¢,n vertices each of which is joined fo every vertex of our K, ,
([2], Lemma 2 (1)).

Denote by u(n; p) the smallest integer such that every & ('n.; w(n; p)]
contains a K (p, p). The value of w(n; p) is not known and its determina-
tion seems to be a very difficult problem. As far as I know the first result
in this direction is due to H. Klein and myself [3]; we proved

(1) an*? < u(ng 2) < a;n®>

(1) This lemma concerns only the case p = 3 but the same proof works in the
general case.
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Probably limw(n; 2)/#** = 122, but it is not even known that
J—m0
this limit exists. The best result in this direction is due to Reiman [5]
who among others proved that

. lim infu(n; 2)/n** =

lim supw(ng 2)n*? = =
Tl D30 2}12

—>o0

Lo | =

Kovari, Sos and Turdan [4] and independently I proved that for
a suitable constant S,

(2) wu; p) < f, pi= MY

Probably u(n; p) - fon® ", but this is known only for p = 2
(see | 1]).

In this note we prove the following refinement of (2):

TueoreM 1. There is a constant y, such that every G(n;[y,n” '"])
contains a K(p--1,p-t-1) from which one edge is missing.

Remarks. Clearly the strueture of a K(p{1,p+1) from which
one edge is missing is nniguely determined.

One could conjecture (by analogy to [1]) that every (r'(n; wing p))
containg a K(p-+1, p+1) from which one edge is missing. This wonld
of course be a much stronger result than Theorem 1, but, it true, it will
be hard to prove since we do not know the value of w(n;p) and have
no idea of the structure of the extremal graphs G(u; win; -p)—]) which
do not contain a K(p, p).

Instead of Theorem 1 we shall prove the following sharper

Tiworem 2. Let 1 = p be any integer. Then there is a constanl y,,,
such that for n > ny(p, 1) every G(n; [y, 0> """]) contains a subgraph
H(p, L, ) of the following structure: the vertices of H(p, 1, 1) are @y, ..., ap;
Uiy -ovy iy and its edges ave all (x;, y;), where at least one of the indices i
or j 18 £ p.

In other words, H(p,!,1) iz K (I,1) from which the edges (z;, 1;),
min (4, j) = p, are missing.

IFirst we prove two Lemmas.

LeMyA 1. Every G (n,m) contains a subgraph G" each vertex of which
has valence (in G') not less than [m[n].

If Lemma 1 would be false we could clearly order the vertices of
(/(n;m) into a sequence wx,, @, ..., x, where for every ¢, 1 <& < n, a; is
joined to fewer than [m/n] vertices a;, 1 < j < n. But this would imply
that the number of edges of G(n;m) is less than m. This contradiction
proves the Lemma.
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Consider now our G(n; [y,,»° '"]). By Lemma 1 it has a subgraph
((N ; m) each vertex of which has valence u = {y,,#'~"""]. Now we prove

LeMMA 2. Let ¢,; >0 be any constant. Then if y,, is sufficiently
large, our G(N;m) contains a K(p—1,s) with s = [¢,; n'"].

For each vertex y of G(N;m) consider all the (p—1)-tuples formed
from the vertices which are joined to y. Since by assumption y is joined
to at least w vertices, the number of these (p—1)-tuples counted for

each y separately is at least N(p_if 1)‘ Now since N < n, we obtain by

a simple calculation that for sufficiently large y,;

. of V. | N
(a_)l) N (p-—l) - I‘,.p';: " (p— 1)

Thus to some (p—1)-tuples correspond more than s = [¢,; n'"]
vertices y, i. e. (3) implies that there are p—1 vertices x,, ..., #, , which
are all joined to the same s vertices y,, ..., ;. In other words, our graph
containg a K(p—1,s) and Lemma 2 is proved.

Now we are ready to prove Theorem 2. Denote by 2,,...,2x_,_s41
the remaining vertices of (N;m), i.e. those vertices which are not
included in K(p—1,s). By owr assumption the valence (in G (N;m))
of each y is at least « and clearly for y,, > 2¢,; and sufficiently large n,
s+p < u/2, hence each y is joined to more than /2 2’s. Hence there
are more than us/2 edges joining the y’s with the 2’s. Denote now by
#'(#;) the number of y’s which are joined to z; (1 <j < N —-p—s-1).
Clearly

N -p-841
3 us
(4) \ v (%) >
d 2
§=1

and (Y denotes that the summation is extended only over the 2, for
which »'(2;,) = p 1)

Ky SV~ S I _us 1
(b))  ''(z) > 5 —(p+O)(N—p—s5+1) = — = n(p-+1) = 1 VpaCpah
for sufficiently large ¢,; and p,;.

Form now for every z; satisfying o'(z;) = p-+1 all the p-tuples from
the y’s which are joined to z;. The number of these p-tuples, counted for

cach z; separately, clearly equals

(6) \7’(""’(:’“)).
“\p
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Using (5) we obtain from an elementary inequality that the sum (6)
is minimal if all the '(z;) are as nearly equal as possible and if their
number is as large as possible (it is < #). Thus by a simple computation
we geb

(7) > (!;)) >n (”?i“?}f V?«f]) > (1—p -1-1)(;)

for sufficiently large y,,. Formula (7) implies that the number of these
multiply counted p-tuples is larger than [—p-41 times the number of
all the p-tuples formed from the s distinguished 4’s of K (p—1, s). Hence
there are I—p |1 2's, say 2,,...,2_ 5,1, satisfying

(8) vzm)zpHl, 1<i<l—p+1

(only @'(z,) = ! will be needed) and which are all joined to the same
P y's, say to ¥y, ...y ¥y By (8) we can further assume that z, is joined to
Ypypry---y Y1 Let @, ... @,  be the distinguished p —1 «'s of K(p -
—1,5). Now the even graph spanned by @, ...,@, 1,200y 21 pi1;
Urs ooy Yps Upys oo Yy 18 clearly an H(p,l,1), since, by Lemma 2,
Eyyeeny @y g ave all joined to all the y's, yy, ..., y, are joined to all the z;
(1 <j <1—p+1) by the argument following (7) and 2, is joined to z;
(p+1 < j < 1) by construction. Thus the proof of Theorem 2 is com-
plete.
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