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On a Problem in Elementary Number Theory
and a Combinatorial Problem

By P. Erdos

In a recent paper [1] I considered among others the following little problem:
Denote by fi(n) the smallest integer [ so that if

l=m<m< - <a<n, | =Ff(n),

is an arbitrary sequence of integers one can always find ¢ a’s a;,, ---, a;, which
have pairwise the same greatest common divisor. I proved in [1] that for fixed ¢

n

Recently, T observed that using a combinatorial theorem due to Rado and my-
self (1) can be considerably improved and it might, in fact, be possible to obtain
the correct order of magnitude for fi(n). The combinatorial theorem in question
states as follows [2]: Let g(k, t) be the smallest integer so that if A,, ---, A,,
s = g(k, t), are sets each having k or fewer elements then there are always t A’s

Ai, --+, Ay, which have pairwise the same intersection. We have

(2) g(k, t) < ki(t — 1)**",

We conjectured that (2) ean be improved to (¢, ¢z, --- are absolute constants)
(3) gk, t) < ef(t — 1),

The conjectured (3) would have applications to several questions in number theory.
It is not difficult to show that

lim g(k, t)""*
k=0
exists, but I cannot show that it is finite.

Now we prove the following:
Tarorem. For every t and e > 0 there is an ny so that for all n > no(t, ¢),

(4) 26;10!{ nflog log n < fs(ﬂ) < nsN-l-e.

First we prove the upper bound in (4).
Letl £ a; < aa < -+- <a; £n,1 = [n""] be an arbitrary sequence of
integers. We split the a’s into two classes. In the first class are the a’s which have at

least
[ log n ] _
4 log logn

34t
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distinet prime factors. Denote by w, , w:, -+ + the squarefree integers not exceeding
n which have exactly « prime factors. Clearly every number of the first class is a
multiple of some w; , hence the number of integers of the first class is by a simple
caleulation at most

Z wﬁ < nr g (%) /u! < n(log log n + ¢2)"/u!
i i pisn i
< nle(log log n + ¢2))*/ul < &-n**

for every e if n is sufficiently large.
Hence the number of integers of the second class is greater than §:n
sider the (unique) factorization

(5) a; = A:B;, (4:, B:) = 1,

dld e COn-

where each prime factor of A; oceurs with an exponent greater than one and B;

is squarefree. It is well known [3] and easy to prove that the number of integers

m < n all of whose prime factors occur with an exponent >1 is less than emn'”.

Hence there are at least (1/2¢;)n'"*™ integers a;, with the same A :
. 1 .
(6) ai; = Ac'j Bt‘}r l1=j=r r> 2_63?]‘””, Ay = A

Clearly the number of prime factors of the squarefree number B; is less than u.
A simple computation gives, for n > no(e, t),

1 1s+e g 1y _[1 logn ])
é-'—‘mn >u.(i 1) (H—[4loglag—£‘-% v

Hence from (2) there are at least ¢ B’s and hence by (6) at least ¢ a’s which have
pairwise the same common factor, which proves the upper bound in (4).
To prove the lower bound in (4) put

§ e I: log n ]
' 3 log log n
and denote by p;'”, 1 < 7 < 3,1 < j < Fk, the first 3k primes. Put

7] th, (D ) 3, (¢1] (3 (9
by’ =P1J?}3 ) bzu =P|IJP.’;", by’ = P2 103}-

The a’s are the 3" integers of the form
k
I8, i=1,20rs.
i=1

A simple ecomputation using the prime number theorem (or a more elementary
result) shows that all the a’s are less than n. Further, obviously no three of them
have pairwise the same greatest common divisor, also f,(n) = fy(n), thus the
lower bound in (4) is proved and the proof of our theorem is complete.

The inequality (3) would easily imply

(7) fl('?'l) < (c:)!““ nflog log n
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The proof of (7) (using the unproved conjecture (3)) would be similar to the
proof of our theorem. Instead of the decomposition (5) we would have to put a; =
(';D; where all prime factors of ('; are less than log n and all prime factors of D; are
= log n. We suppress the details.

Very likely

: log log n
(8) I,:S; IOE(ff(n)J" logT
exists and perhaps it might be possible to determine its value, but it will probably
not be possible to express f,(n) by a simple function of n and ¢ (even for t = 3).
If ¢ is large compared to n our method used in the proof of our theorem no longer
gives a good estimation, but it is not difficult to prove by a different method the
following result. Let 1 < a; < a, < --- < a; £ n,l = Cn be given, then there are
always n'¢ integers a;, , ---, a; which have pairwise the same common factor
(& depends only on ('), but we do not investigate this question here any further.
I have not been able to decide if to every a > 0 there is an ng(a) so that if
n > ne(a) and

= <am< - <a £n, l = an,

is any sequence of integers, then there always are three a’s which have pairwise the
same least common multiple. This is certainly true (and trivial) if « is close enough
to 1; perhaps the whole question is trivial and I overlooked an obvious approach.
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