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On a Problem in Elementary Number Theory
and a Combinatorial Problem

By P. Erdös

In a recent paper [1] I considered among others the following little problem :
Denote by f t (n) the smallest integer 1 so that if

1 < a, < a 2 < . . . < ai < n,

	

l = f ,(n),

is an arbitrary sequence of integers one can always find t a's ail ,

	

, ai, which
have pairwise the same greatest common divisor. I proved in [1] that for fixed t

(1)

	

f~(n) < exp [(log n) 1 /2 ]- E

Recently, I observed that using a combinatorial theorem due to Rado and my-
self (1) can be considerably improved and it might, in fact, be possible to obtain
the correct order of magnitude for f 1 (n) . The combinatorial theorem in question
states as follows [2] : Let g(k, t) be the smallest integer so that if A 1 , • • • , A 8 ,
s = g(k, t), are sets each having k or fewer elements then there are always t A's
A il , • • • , A z , which have pairwise the same intersection . We have

(2)

We conjectured that (2) can be improved to (c l , c, ,

	

are absolute constants)

( 3 )

	

g(k, t) < clk(t - 1)k+1

The conjectured (3) would have applications to several questions in number theory .
It is not difficult to show that

lim g(k, t) 1/k
k=oc

exists, but I cannot show that it is finite .
Now we prove the following :
THEOREM. For every t and e > 0 there is an n6 so that for all n > n o (t, e),

(4)

	

2ctlog n/log log n < f (n) < n 3/4+ct (n)

we prove the upper bound in (4) .
Let 1 5 a l < a 2 < . . . < a a <_ n, 1 = [n 3/4+< ] be an arbitrary sequence of

integers . We split the a's into two classes . In the first class are the a's which have at
least

log n

	

_
4 log log n - n
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g(k, t) < k!(t - 1)k+1 .
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(5)
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distinct prime factors . Denote by w1 , w2 , • • • the squarefree integers not exceeding
n which have exactly u prime factors . Clearly every number of the first class is a
multiple of some wi, hence the number of integers of the first class is by a simple
calculation at most

n < n • E
(_)u/u1

< n(log log n + c 2 ) n/u!
wi

	

Pi <_ n pi
< n(e(log log n + c2) ) u/u! < 12

-n 3/4+,

for every e if n is sufficiently large .
Hence the number of integers of the second class is greater than 2

n3i4+E Con-
sider the (unique) factorization

ai = A iB i ,

	

(A i , B i ) = 1,

where each prime factor of Ai occurs with an exponent greater than one and B i

is squarefree. It is well known [3] and easy to prove that the number of integers
m < n all of whose prime factors occur with an exponent > 1 is less than c3n' 12 .
Hence there are at least (1/2c 3 )n`+E integers ai; with the same Ai

1

	

1/4+E

	

A .(6)

	

ai i = Ai i Bi ; ,

	

1 < j _<_ r, r >

	

n

	

Ai; =23

Clearly the number of prime factors of the squarefree number B i is less than u .
A simple computation gives, for n > no (e, t),

1

	

1/4+E

	

n+~

	

1 log n
2ca

n

	

> u! (t - 1)

	

u = [4 tog log n])

Hence from (2) there are at least t B's and hence by (6) at least t a's which have
pairwise the same common factor, which proves the upper bound in (4) .

To prove the lower bound in (4) put

_

	

log n
k - [3 log log n

and denote by pi ( ' ) , 1 <= i <= 3, 1 < j <= k, the first 3k primes. Put
b i ( i)

	

(i)

	

(i)

	

b2 (i)

	

(i)

	

(5)

	

b3 (5)

	

(5)

	

(i)= pl p2

	

= pi P3

	

= P2 pa

The a's are the 3k integers of the form
k

H b i

i= 1
i = 1, 2, or 3 .

A simple computation using the prime number theorem (or a more elementary
result) shows that all the a's are less than n . Further, obviously no three of them
have pairwise the same greatest common divisor, also ft(n) >_ f3(n), thus the
lower bound in (4) is proved and the proof of our theorem is complete .

The inequality (3) would easily imply

( 7 )

	

ft(n) <
(,, ') log n/log log n
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The proof of (7) (using the unproved conjecture (3)) would be similar to the
proof of our theorem . Instead of the decomposition (5) we would have to put a i =
CiDi where all prime factors of Ci are less than log n and all prime factors of D i are
>_ log n . We suppress the details .

Very likely

(8)

	

lim log (f,(n)) .log log n
n=x

	

log n

exists and perhaps it might be possible to determine its value, but it will probably
not be possible to express ft(n) by a simple function of n and t (even for t = 3) .

If t is large compared to n our method used in the proof of our theorem no longer
gives a good estimation, but it is not difficult to prove by a different method the
following result . Let 1 _<_ a 1 < a2 < . . . < a, < n, l = Cn be given, then there are
always n'c integers a il , . . . , a ir which have pairwise the same common factor
(E c depends only on C), but we do not investigate this question here any further .

I have not been able to decide if to every a > 0 there is an no(a) so that if
n > n o (a) and

1 <=a 1 <a2< . . . <a,<=n,

	

1>=an,

is any sequence of integers, then there always are three a's which have pairwise the
same least common multiple . This is certainly true (and trivial) if a is close enough
to 1 ; perhaps the whole question is trivial and I overlooked an obvious approach .
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