
EXTREMAL PROBLEMS IN GRAPH THEORY 

P. ERD& 

In the present paper @(n; 1‘1 will denote a graph of n vertices and 2 edges. K, will 

denote the complete graph of p vertices @ 
( 0) 
p; : and K(p, p) will denote the com- 

plete bipartite graph, more generally K(p,, . . ., pr) will denote the complete r-chro- 
matic graph with pi vertices of the i-th colour, in which every two vertices of different 
colour are adjacent. C,, will denote a circuit having n edges. 

In 1940 T&N [l] posed and solved the following question: Determine the smallest 
integer m(n, p) so that every @(n; m(rz, p)) contains a Kp’ Tudn in fact showed that 
the only @[n; m(n, p) - 1) which contains no K, is K(wt,, . . . . m,-z) where the mi 
are all as nearly equal as possible, i.e. for 0 5 i 5 p - 2 nti = [(n f i - l)j(p - l)]. 
Thus a simple computation gives that if n s r (mod p - 1) then 

+, P) = 2(“n-:, (n’ - r2) + (;) ’ 

Tursin further asked: How many edges must a graph contain that it should certainly 
have subgraphs of a prescribed structure? In particular he asked: Determine the 
smallest h(k, rt) so that every @(n; h(k, n)) should contain a path of length k. GALLAI 
and I [2] and ANDR~SFAI [2] investigated these and related questions and solved 
them nearly completely. In the present paper we shall try to investigate as systema- 
tically as possible the following question: What is the smallest integer f(n; k, Z) for 
which every graph B(n;f(n; k, I)) contains a @(k; 1) as a subgraph? These problems 
become very much more difficult, but in my belief also more interesting, if we also 
consider the structure of the graphs @(k; Z). W e now define three functions f i(n; k, I), 
1 2 i 2 3.f,(n; k, 1) is the smallest integer for which every @(n;f,(n; k, I)) contains 
at least one @(k; I). f,(n; k, Z) is the smallest integer for which there is a 8(k; Z) of 
given structure so that every (Si(n;f,(rt; k, 1)) contains this @(k; I). f,(n; k, Z) is the 
smallest integer so that even the @(k; Z) which requires most edges occurs in 
@(u;f,(n; k, I)). Clearly @(n;f3(n; k, I)) contains all the graphs of k vertices and Z 
edges. Trivially 

It is easy to see that in generalf,(n; k, Z) < f2(n; k, E), since it is not hard to see that 
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for n > 7 fl(n; k, [k2/4] $ 2) = [n2/4] + 2 but @(n; [n2/4] -t 2) does not have to 
contain any B(k; [k2/4] + 2) of any given configuration. Further it is easy to see 
that in general f2(rt; k, I) c f,(n; k, I). Further I recently proved that 

Now we will try to determine as systematically as possible the values off,(rz; k, 1) 

for fixed k as I increases from 1 to 
0 

i , as far as possible we will investigate fi(n; k, 1) 

too (for 2 5 i s 3), in other words we will investigate structural problems too. 
We will give no proofs in this paper; if no reference is given to a result then it is 

not yet published. 
Assume first 2 < k. If I $ ik then trivially (where there is no danger of misunder- 

standing we write f(n; k, 1) for fI(n; k, I)) 

(2) f(n;k,l)= 1. 

If $k < I < k then it is easy to see that 

(3) f(n; k, I) = f(n; 21 + 2 - k, 22 + 1 - k) . 

Finally 

j(n; k, k - 1) = (kk-W2’,n + 1 . I 1 
The structural problems are very much more difficult: GALLAI and I proved [3] 

that every 

(5) @(rr; e(k, n)), e(k, n) = max + 1, (k - 1) n - (k - 1)2 f 

contains k independent edges and that this result is the best possible. The proof is not 
easy. Trivially every @(n; [xk - 1) n] + 1) contains a star of valency k. Further 
Gallai and I [2] proved that every @(n; [i(k - 1) H] + 1) contains a path of length k. 
V. T. S6s and I conjectured that every @(n; [$k - 1) n] f 1) contains all trees 
having k edges and that every @(n; e(k, n)) co.ntains all forests (i.e. graphs all whose 
components are trees) of k edges, but we did not succeed to prove any of these 
conjectures. 

For 1 = k there is a sharp jump in the behaviour off(n; k, l) sincef(rz; k, k)/rz -+ cc 
for every fixed k as n --t co. Before we continue our investigations for general k, we 
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discuss as completely as possible the cases k = 3, 4 and 5. For k = 3 there is only 
one graph @(3; 3), the triangle, and by Turan’s theorem [1] 

f(n; 3,3) = f + 1. [I 
For k = 4 there are two graphs @(4; 4) the square and the triangle, with an edge. 
A simple argument shows that for n 2 4 

f,(n; 4,4) = $ + 1 . [I 

a b c d 

Fig. 1. 

On the other hand the determination of j,(n; 4,4) = fi(n; 4,4) seems to be a very 
difficult problem (i.e. how many edges does a graph of n. vertices have to have in 
order to contain a square?). 

E. KLEIN and I proved [4] that (the c’s denote suitable absolute constants) 

cin3/’ <fi(n; 4,4) -c c2n3/2 . 

The sharpest estimates at present are due to REMAN [5]; he proved 

-!-- s limf(n; 4, 4)/n3/’ 5 +. 
2J2 ll=m 

It seems likely that the limit in (5) equals &/2 but it is not even known whether the 
limit in question exists. 

It is easy to see that f(n; 4, 5) = [n2/4] + 1 [6], there is only one graph @(4; 5); 
K4 minus an edge. More generally DIRAC and I [7] proved (independently) that 
every @(n; m(n, k)) already contains a Kk+ i from which at most one edge is missing. 

f(n; 4,6) is given by TurBn’s theorem. 
It isnot difficult ta see that for II > no,f3(n; 5, 5) = [n2/4] + 1. The graphs @(5; 5) 

are in Fig. 1 and e gives for n > Q, fl(n; 5, 5) = j,(n; 5, 5) = fl(n; 4,4). 

31 



CAVALLIUS [S] obtains an upper bound for fl(n; 5,6) = j,(n; 5,6) (more ge- 
nerally he gives an upper bound for u(n; 2, k) where u(n; 2, k) is the smallest integer 
for which every @(n; u(n; 2, k)) contains a K(2, k)). 

Besides K(2, 3) the other graphs 8(5; 6) are given by Fig. 2 and it is easy to see 
that if n > n, all of them appear in an @(n; [n2/4] -J- l), thusf,(n; 5, 6) = [n2/4] + 
+ 1. 

a 17 \ 

\ 

c 

Fig. 2. 

There are four types of graphs @(5; 7), Fig. 3. Dirac and I showed (independently) 
that for 11 9 no every @(n; [n2/4] + 1) contains graphs of types u and b, i.e. 
f,(n; 5, 7) = f,(n; 5, 7) = [n2/4] -t- 1. I showed that every @(n; I,), 1, = [n2/4] + 
+ [n/4] + [(n + I)/41 + 1 contains also subgraphs of the type c and it is easy to 
determine all the graphs @(n; I, - 1) which do not contain graphs of the above type. 

a b c ii 
Fig. 3. 

As already stated, Dirac and I showed that every @(n; [n2/4] + 1) contains d, in 
fact it even contains a 8(5; 9). 

There are two types of @(5; 8), Fig. 4. u is settled by the sharpening of T&n’s 
theorem due to Dirac and myself, Dirac and I further showed (independently) that 
every @(n; In) contains b. 

@(5; 9) and 8(5; 10) present no new difficulties. 
I did not carry out a similar discussion for graphs having 6 vertices. I only state 

one result which seems interesting: 

fdn; 6, 12) 4 $ + c,n3j2 , f,(n; 6, ‘2) < f + c4n312 
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and in fact every B(n; [n2/4 + c4n3”]) contains as subgraph an octahedron. I cannot 
prove that lim (fi(n; 6, 12) - n2/4)/n3’2 exists. 

n=m 
Now we return to the discussion of f,(n; k, Z) for general k. First of all I proved 

that for k 2 3 

(8) f,(n; k, k) > ni+ak Fig. 4. 

for a certain ak > 0. 
I can also prove that every @(n; [crnl+“k]) contains a C,,; the proof is more 

difficult than the proof of (6) 
For large values of k our three functions Sxn; k, 2) do not suffice to describe 

completely the many problems, since there are very many graphs @(k; I), but we have 
not succeeded in solving or even in classifying the many problems which can be posed 
here; I will try to state here all the resuhs which are known. 

I showed that for n > n,(k), every @(n; [n2/4] + 1) contains a Czk+l; in fact 
there exists an absolute constant c so that every @(n; [n2/4] + 1) contains every C,,, 
for 3 I m _I cn. The proof is not trivial. K([n/2], [(n + 1)/2]) shows that [n2/4] + 1 
is best possible [13]. 

Now we investigate the range k < I 5 k2/4. Kijv.& the TURANS [9] and 
(independently) I proved that every @(n; [~n~-l’~]) contains a K(k, k). It seems 
likely that this result is best possible and in fact we conjectured 

f,(n; 2k, k2) > akn2-1’k ; 

but this is proved only for k = 2, and we could not even prove that 

limf(n; 6, 9)/n3/’ = 00 . 
il=cO 

Further I proved that every @(n; [Pkn2-i’k]) contains a K(k + 1, k $ I) from 
which one edge is perhaps missing (the structure of this graph is uniquely determined). 

In the range k < 1 5 [k*/4] I do not have good estimates for f(n; k, I), I cannot 
even prove that for fixed k and sufficiently large n,f(n; k, I) is a strictly monotone 
function of 1. 
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I proved that for every E > 0 there is an q = y](s) > 0 so that for k > k,(r) and 
n > no(k E, r), 

(9) f(n; k, [(I + q) k] c nl+E 

(the opposite inequality, with a different E, follows from (8)). 

Further for every k 2 2c and n > n,(k), I < ck, 

(10) f(n; k, 2) -e n2-’ 

where E depends only on c. In fact the following stronger result holds: Every 
@(ti; [n2+J) contains a subgraph of K([k/2], [k/2]) which has at least ck edges for 
every 2c < k 5 n if n > n,,(k) and E = E(C). 

On the other hand, to every E > 0 there is a C = C(E) so that 

01) f(n; k, Ck) > nzbe. 

Instead of (11) the following sharper result can be proved: Let E’ < E and C = 
= C(s) be sufficiently large. If n > ~(8, E’, C) then there exists a @(n; [n2-‘1) 
which does not contain a subgraph @(k; Ck) for every k < n”. This result is nearly 
the best possible, since it is not hard to show that every @(n; [n”-“1) contains 
a B(k; Ck) far some k < ClnE where C1 = Cl(e) is sufficiently large. 

I would like to state here one further result which can be proved by probabilistic 
methods [lo]: Let E > 0, C > 1 be arbitrary. There is a graph @(n; Cn) so that 
every subgraph of it spanned by m < vu vertices has fewer than m(1 + e) edges; 
q = ~(a, C) could easily be estimated explicitly. 

It is not hard to show that [l l] for CI > 1 every @(n; [cx]) contains a circuit of 
length < /I log n, where j? depends only on a. Probably every @(n; [cot]) (ct > 1) 
contains a subgraph S([j$ log n]; l/J, log n] + t) where j$ depends only on t. 

Now we give a very short discussion of 2 > [k2/4]. Dirac and I showed 
independently that every @(n; [n2/4] + 1) contains, for every k 5 n, a @(k; [k2/4] -t 
+ 1). In fact Dirac proved a more general theorem. 

Considerably more difficult is the proof of the following result: To every k there 
is an n,(k) so that for every IZ > n,,(k) every @(n; [ia’/ + 1) contain sa K(k, k) 
with an extra edge (the structure OF these graphs is uniquely determined) [13]. 

It is not hard to show by complete induction that for [(k + 1)/4] 2 U, 

02) f+:k[!j+ .)=[$]+.. 
It is easy to see that (12) no longer holds for u > [(k + 1)/4], but the discontinuity 

is not very sharp since it is easy to see by induction that if n 2 k then 

(13) f(n;k,[Z]+[!+])=[;]+[+] 
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and now there is a sharp discontinuity since it is not difficult to show that 

by (S). We can determine the values of f(n; k, [k*/4] + Z) far [(k + 1)/4] s 1 < 
< [(k - 1)/2], but th e f ormulas are complicated and we omit them. 

By very complicated arguments I can show that every @(n; [n*/4 f n’+“[k’21]) 
contains a K(k, k) and a circuit whose vertices are all the vertices of one of the k-tuples. 

In 1946 STONE and I proved [12] that far every E > 0 and every k if n > ng(s, k), 
@(n; [(n2/4)(l + E)]) can t ains a K(k, k, k); by a refinement of our method I can in fact 
show that far sufficiently large C every @(n; [n*/4 + Cn2-1’k]) already contains 
a K(k, k, k). 

I da not pursue the investigations af f(n; k, I) further since a complete analysis is 
hopeless at present and so far I have succeeded to find no new phenomena in the 

interval k2/3 s 1 5 k 

0 2 * 
Befare completing the discussion aff,(n; k, Z) I would like to mention two further 

problems: It is not hard to show that 

j(n; 7,15) = f + 
[4] [?I+ l* 

But I cannot decide the question, how many edges must a graph of n vertices have 
in order that it contain a K(1,3,3)? Perhaps [n*/4] -t n + 1 edges suffice for this 
purpose. It is easy to see that [n2/4] + n edges are not sufficient. (Added in proof: 
I succeeded in proving this conjecture.) Very many other such problems could be 
stated. 

Turdn asked in a canversatian to determine the smallest number of edges that 
a graph of n vertices must have in order that it contain the various regular bodies. 
For the tetrahedron the answer is m(n, 3) by [l], the octahedron has already been 
discussed. The problem of the cube seems difficult. I can show that far sufficiently 
large c every @(n, [cn3’*]) contains a hexagon and a vertex joined to three non ad- 
jacent vertices of the hexagon but I cannot decide whether it contains a cube, The 
icosahedron, dodecahedron and higher dimensianal cubes have not been investigated 
so far. 

Before completing the paper I would like to state a few related results which cannot 
be described in terms af our functions fi(n; k, 1). P&A and I [11] proved that for 
n > 24k, every @(n; (2k - 1) n - 2k2 i- k + 1) contains k vertex independent 
circuits (i.e. k circuits which pairwise have no cammon vertex). But we have not 
succeeded in solving the extremal problem for 3k 2 n 5 24k, except for a few special 
values of k. 
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P&a proved that every @(n; 2n - 3) contains a circuit with at least one diagonal 
and that the result is false for @(n; 2n - 4). CZIPSZER found a very simple and 
ingenious proof of this result; by his method one can easily show that for a certain c 
and n > n,(k) every @(n; kn + c) contains a circuit with at least k - 1 diagonals 
emenating from a vertex, It is easy to see that c 2 I - k2. Perhaps c = 1 - k’? 
For k = 2 this is P&a’s result, and I can prove it for k = 3 and k = 4 also. 

Finally I proved that for every E and r there is an no = q(s, r) so that for every 
n > no(c, r) every @(n; [n2/4] + $1 + 8)) contains a circuit and r vertices not on 
this circuit each of which is adjacent to every vertex of the circuit. It is easy to see 
that this result does not hold for every @(n; [n2/4] + n). 
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