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1. Introduction. At successive stages in the development of the proof
of the prime number theorem several authors have investigated the rela-

tion
% r f‘l T
D1(3) - % = +bato(@) (2> ),

n=1

or the same relation with a stronger error term, and deduced from it,
under various supplementary conditions on f(x), that

(1) fl@) = x+o(x).

The problem is discussed explicitly by Landau ([7], pp. 597-604; [8]),
Ingham ([3]), Karamata ([5], [6]), Gordon ([1]), and is implicit in the
‘Eratosthenian’ summation method introduced by Wintner ([10], [11]).

In this paper we consider the analogous problem in which the se-
quence {n} of all positive integers is replaced by a finite or infinite sequence
1, a,, @y, ... of real numbers for which

. v 1
1< <035 oy AZZE:< oo,

Initially f(«) is supposed defined for all # > 1, but for formal convenience
we extend its definition by pufting f(z) = 0 when # < 1. We may then
write our basic hypothesis in the form

(2) fle) + Zf(%) = (1+2%) 2+ 0 (),
or in the equivalent form
@ . o+ M) = o),
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where
f(.’l?)"-.‘.!! (.’B = 1);

Jol@) = 0 (W< 1),

The summations in (2) and (2), are over all a,, but are equivalent for our
purpose to summations over the range a, < z, since any errors arising
from the change can be absorbed into o (x). This follows from our assumption
A < oo, which implies, when {a,} is infinite (the only non-trivial case),
that
a, - oo a8 M —> o9, 21/%—»0 as & — oo.
a,.>z

Our aim is to deduce (1) from (2) (or (2),) under appropriate supplemen-
tary conditions on {a,} and f(x).

The conditions on f(x») will be stated in terms of membership of
certain classes. We denote by % the class of complex-valued funections
f(z) defined and bounded in every bounded interval and equal to 0 for
@ < 1; by % the subclass of # for which f(z) is real; by # the subclass
of # for which f(x) = 0; and by # the subelass of # for which f(2) is non-

decreasing.
We shall use elementary methods where possible, but in order to re-

veal the ‘natural’ condition on {a,} we shall ultimately resort to analy-
tical methods based on Wiener’s general Tauberian theory.

2. An Abelian lemma. To avoid needless repetition we formulate
an Abelian, or ‘averaging’, principle in a form suitable for a variety of

applications.
LeyyA. Suppose that g(x)e R, and let

g (@) = Zg(%),
g =lim(g(2)/a), & = lim(g(x)/a),

with similar meanings for g* and G* (where any of g,@, ¢*, G may
be finite, 4+ oo or —oo). Then

Ag < g* <@ < AG.

Suppose the lim inequality false and take a number H so that
G* > AH > AG@. Since G < H, we have
gu) <Hu for wu=§&=E¢&H) (>1),

and so, for x > ¢,

g‘(a:) < Z Hzx Kz

ap<zj¢ U ap>afs
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where K = K (&) is the upper bound of ¢(u)/u for 1 < u < &. Dividing
by # and taking lim (with H, & fixed), we obtain G* < AH+0, con-
trary to the choice of H. The lim inequality may be proved similarly, or

deduced by applying the lim result to —g(x).

We shall apply the Lemma with obviously permissible modifications.
Clearly we may replace {a,} by other sets with similar properties. Also
g* and G@* may be taken to relate to a restricted passage of « to oo, pro-
vided that g and G still relate to the unrestricted passage.

3. Elementary methods. These seem to be effective in general only
when 4 <1.
TarorREM 1. (i) If A < 1 and fe¥€, then (2) implies (1).
(ii) If A =1 and fe R, then (2) implies that

lim(f(z)fz) =1+¢ (0 <e < oo).
By taking real and imaginary parts we may suppose, in (i), that

feZ. Take g(z) = f,(x) and use the notation of the Lemma. The relation
(2), is equivalent to
(3) —g(2) = g*(2)+o(a).
Dividing by # and taking lim and li_m, we obtain
—g =G, —G=g".

Also, by the Lemma,

g<g* <G < AG.
Combining these results, we deduce that
(4) —g =G <AG = —Ag* < —A%y.

If (i) A <1, then, assuming provisionally that ¢ is finite, we con-
clude that (1L—A%g >0, g >0, and thence that AG <0, G <0. If
(ii) A = 1, the extreme members in (4) are equal, so therefore are all. Since
g <@, it follows that ¢ = G = 0 in (i), and that —g = ¢ = ¢ = 0 in (ii).

It remains to justify the provisional assumption, in (i), that g is
finite. Let y(«) be the upper bound of |g(u)|/u for 1 < u < x. By the
definition of # this is finite for each = (1 <& < o0); and, by using,

first the definition of g*(u), and then the relation (3) (with » in place of x),
we obtain, for 1 <@ <,

lg* (w)|/u < Ay(x), lg(u)l/u < Ay(x)+K,
where K is a (finite) constant. Taking the upper bound for 1 <u <@
in the last relation, we deduce that

yo < ay@+K, L <o L

for # > 1; whence ¢ and G are finite.
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To make further progress when 4 = 1 we impose heavier restrictions
on f(x).

THEOREM 2. Suppose that A = 1, that fe.#, and that (2) holds. Then
(1) holds unless a, = a™ (n =1,2,...) for some fived a >1 and odd in-
tegers ry,. In this case (1) need not hold.

Since fe?, we have the conclusion of Theorem 1 (ii) with 0 < ¢ < 1.
We assume that ¢ >0, and try to obtain a contradiction.

Let @ —» oo through a set X of values for which

(5) f(@) = (14+c)z+o(2).
Then, for every fixed ¢,

@ x
6 —]=1—e)— ;
(6) f(ai) ( c)m +o()

For under this limit process we have, by the Lemma (with the modi-
fications indicated at the end of § 2),

1
fol@) + Ef(;) >t (1 —5‘;) {*-fw)%-fo(%) +o(a),
and so, by (2),,
r x
fo (a;) < "Ga +o(x);

and since the opposite inequality obviously holds we have the equiva-

lent of (6).

A similar resnlt holds with ¢ changed to —¢ in (5) and (6). Applying
these results alternately, replacing x successively by z/a; ete., we con-
clude that, if ¢ is any fixed product of r (equal or distinet) a’s, then

(7) f(—z-) = (1+(—1)'0}§+0(w)

when @ — oo through a set X for which (5) holds.

Suppose first that there are two a’s say a; and a;, for which loga;
and loga; are linearly independent (over the rationals), i.e. such that
a; # aj for any integers u,v» > 0. Then for every & > 0 there are posi-
tive integers k& and I such that

(8) a*! < aff < (14e)ai'".

For this is equivalent to
_ logay 5= log(1+¢)
loga;’ © logg

and sinece « is irrational it follows from Kronecker’s theorem that the

k—}a—3}d<la<k—ia (a



Arithmetical Tauberian theorems 345

numbers la (I =1,2,...) are everywhere dense (mod 1), so that there
will be one in the above interval for a suitable integer %k (> a > 0).
Taking ¢ = a'*! and ¢ = a}* in (7) and combining with (8), we conclude

that
axr £
EREay )

if &£ > 0 is taken so small that (1+e)(1—e¢) < (1+¢) and » is taken
sufficiently large in X. But this contradicts the hypothesis that fe.”.

Next suppose that no two loga, are linearly independent. Then
ay» =a,» (n =1,2,...), where u, and v, are positive integers with
(y, v,) = 1. Moreover, u, and v, are both odd. For, if not, they are of
opposite parity (since they cannot both be even), and by taking ¢
= af» = a;» in (7) we obtain the obvious contradiction that f(z/q)
< flz/q) for sufficiently large a in X.

If the odd integers v, are bounded (in particular if the number of
a’s is finite), let M be their least common multiple, and let ¢ = a/™ > 1.
Then a, = a™, where r, is the odd integer u,(M |v,); and we are in the
special case described in the enunciation.

If the v, are unbounded, it is enough to show that, for every ¢ > 0,
we have a relation (8) with ¢ = 1 and suitable positive integers j, k, I;
for this will lead to a contradiction as before. To obtain such a relation
(8), take a fixed n, say n = j, and choose positive integers k, 1 (= k;, l;)
so that

2ku;— 2y = v;+1;

this is possible since (u;,7;) =1 and v;+4+1 is even. Then

2k ¢ 2141 1jv
a;’lay ' = a7,

and this can be made to lie between 1 and 1+ ¢ by choice of j since the
7, are unbounded.

To complete the proof of Theorem 2 we now construct a counter-
example for the special case, though the motive behind the construction
will not emerge until § 5. Take a fixed ¢ > 0 so that tloga is an odd
multiple of =, then a fixed » > 0 so that b*(1+1*) <1. Let

@+ bxcos(tlogr) (v = 1),

fa) = (® <1).

Then fe#, as may be verified by differentiation. Also

I (_a:_) .. —bims(tlog:c) (ap < @),
Qy,

ay, Ay,
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since {log a, = tr,log @ is an odd multiple of =. Hence
fla)+ yf(_m_) = (1+A)e+b(l1—A)zcos(tlogz)to(w) = 22+ o0(x)
2 a, =" s g = L]

since 4 = 1. Thus (2) holds. But (1) does not, since

im % 11,

COROLLARY. If the a, are distinet integers with A <1, and if fe S,
then (2) implies (1).

If A < 1, this follows from Theorem 1 (i). If 4 = 1, we have to show
that the exceptional case of Theorem 2 cannot oceur. Suppose it does
occur. Then a, = a'™, where a > 1 and the odd integers r, may be assu-
med to have no common factor greater than 1. Writing d,, = (ry, ..., 1),
we have d,., | d, (n =1,2,...), so that d, must ultimately reach a con-
stant value d, say for » = h; and d must be 1 gince it divides every r,.
Since d; = 1, we have, with suitable integers e,,

1=re+...+r6, a=ajl...as.

Hence a is rational, and therefore integral since a™ is the integer a,. Thus
a > 2. Also r, = 2n—1, since the a, are distinct. Hence

Z 2
A ‘-~.. --<..'_’
a*—1 3

contrary to the hypothesis that 4 =1,

4. Special cases with A > 1, When special relations exist among the
a, it may be possible to use elementary methods even if 4 > 1. By way
of illustration we consider a particular class of cases (which could easily
be extended), but we do not attempt to formulate a general rule.

THEOREM 3. Suppose that, for a fized . > 1 and some subset S of
{a,}, the numbers 4 and ia, (a,eS) together form a subset T of {a,}; and sup-
pose that

(9) 2..-1_+1 Y‘i<1

& )_A_J

where the summations are over the sets T', 8" complementary to T, 8 in {a,}.
Then (2) implies (1) for functions f belonging to €.

Suppose that fe# and that (2) holds. Subtracting from (2), the same
relation with # changed to #/4, and cancelling common terms, we obtain

fort D 2) = D) = o
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el 2

Applying the Lemma to the right hand side, and writing

whence

fo@)l < )

T

fo({?)\ +o(2).

c=ﬁ@ (0 <e < ),
we deduce that

¢ = ac,

where a is the expression on the left of (9). Since a« < 1, it follows that
¢ = 0; for the alternative ¢ = oo may be excluded by the argument
used at the end of the proof of Theorem 1 (since a, >1, Aa, >1, and
a<l).

BxawpLe. {a,} = {2,3,4}. All conditions are satisfied with 4 = 2,
8 = {2}, T = {2, 4}, the condition (9) being

P10+ D <1.
But 4 = :—: > 1, so that Theorems 1 and 2 are not applicable.

5. Analytical methods. We now introduce the complex variable
8 = o+ti. We write a, = 1, and to avoid confusion we use Y (instead
of }) to indicate summation with lower limit 0 (instead of 1). With {a,}
we associate the ‘zeta-function’

# 11 i !

(10) Z(s) = 1+/§ == Z & (o=,
Since A < oo, the series are absolutely-uniformly convergent for ¢ > 1,
so that Z(s) is regular for ¢ > 1 and continuous for ¢ > 1. We write

A" =14+ 4 =Z(@1).

For any h(r) defined for all real # and equal to 0 for x << 1 we write

g i @ ! r
w = Jale)= (g}
with a similar notation in other letters. Thus the expressions on the
left of (2) and (2), will be denoted by F(x) and F,(x), respectively.
THEOREM 4. In order that (2) should imply (1) for functions f belong-
ing to F, it is (S) sufficient, (N) necessary, that Z(s) should not vanish on
the line ¢ = 1.
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Sufficieney. If he? and is (bounded and) integrable in every boun-
ded interval, we have, for # > 1,

| Fw= [ Bal-5 [lele=Z [G

where each 2’ may be taken over the finite range a, <. Inter-
changing summation and integration again, we obtain

H (u) ( )d
11 — i = h >1),
(1) f w f awh( )5 @1
where
a(y}:Zl.
a,<y

We make two choices of A.
(i) h(u) = l

where ¢ = 1. Then
H(u) = ( ) — W*Z(s)+o(u)

Ap=t%

w  (u=1),
0 (u<1),

as u — co (s fixed). Substituting into (11), dividing by 2°, and making
& — oo, we obtain

_Z(f)_ - j? a(y) d

. s y (o =1).

(12)
1
The argument proves convergence of the integral; and, since this holds
for s = 1 and since a(y) > 0, the integral must in fact be absolutely-
uniformly convergent for ¢ > 1. The representation (12) may, of course,
be derived directly from (10) by the familiar process of replacing a sum
by an integral, since (as a consequence of the condition A < oo)
a(x) = o(z) a8 ¢ — oo.
(ii) b = f, where it is assumed that fe.# (and is therefore bounded
and integrable in every bounded interval) and that (2) holds. By (2),

Fu) = A'uto(u) a8 u— oo.

Substituting into (11) (with f, ¥ for h, H), we deduce that

(13) —J (y)f( )7—>A’—-Z(1) S
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On the right of (12) and (13) we may extend the ranges of integration
to (0, oo) since a(y) = 0 for y <1 and f(x/y) = 0 for y > x. Putting
x =¢, y =", writing

k(n) = e"a(e’), (&) = ef(€),
and taking ¢ =1 in (12), we deduce that

, Z (14 t2) ot
(12) e fk(a;r)e dy  (t real),
(13") .’1 k(n)p(E—n)dy — f kE(n)dy as & — oo,

Now kelL(— oo, oo), by what was said about the integral in (12).
Also, from (2) and the hypothesis fe.# we deduce, first that 0 < f(z) < Ka
(z > 0) where K is a constant, and then that ¢(£&) is bounded and that,
if § > 0,

p(E+8)—@(&) = (e’—1)p(&) -0 when (&, 6)—>(oo,0).

Suppose now that Z(14t) = 0 for real . Then, by (12’), the Fourier
transform %(t) of k(%) does not vanish for real ¢, and it follows from Wie-
ner’s Tauberian theory, in Pitt’s form (see, e.g., [2], Theorem 221), that
(&) -1 as &> oo, i.e. that (1) holds.

Necessity. We consider this in a more general form than is re-
quired for our immediate purpose. Suppose that Z(g) = 0 for some ¢
= f+ i with § > 1. Since Z(f 4+ yi) are conjugates and Z () > 0, we may
suppose that y > 0. Take a fixed b > 0, and let f(x) = Rh(x), where

z+ba®  (x=1),

h(z) =

(x < 1).
Then
H@ = Y (2 +ba—)~zu)w+bzw)m9+o(m),
ay=x n
since
e & Y
g(%% ) Z( + ) o(@).

Since Z(1) = 1+4 and Z(p) = 0, it follows that (2) holds. But (1) does
not hold, since

— f(@) llib (B=1),

lim—— =

— @ +oo  (f>1).
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If f =1 we can also satisfy the condition fe.#; for, if 0 < b <1/|g|,
we have f'(x) > 0 for # > 1, and f(14-) = f(1) > 0.

6. Comparison of methods and results. The condition Z(1--1i) # 0
in Theorem 4 elucidates the exceptional case in Theorem 2. If {a,} is such
that (2) does not imply (1) for funections f belonging to .#, we must have
Z(1+4yi) =0 for some y > 0. If also 4 =1, then

Za=n Ny
T
ﬂu all <

But these together imply that e = —1 (n=1,2,...), ie. that
a, = a™ with a = ¢ (>1) and odd integers r,. Conversely, if these
relations hold with some @ >1 and if y (> 0) is defined by a = ™,
then Z(1+ )= 1—A when ¢t is an odd multiple of y. Thus Theorem 2 is
included in Theorem 4; and the construction near the end of § 3 is a spe-
cial case of that at the end of § 5.

If A <1, the condition Z (1) # 0 is obviously satisfied, but The-
orem 4 does mnot include Theorem 1(i) owing to the restrietion on f.
Theorem 1(i) can, however, be recovered by a simpler (formal) use of
Z(s) leading to an analogue of the Mibius inversion formula.

To explain this we revert to the general case A < oo. Taking g,

80 large that
71
Z(o)—1 = 2 o= <1 (0= a0y,

we obtain, by manipulation of absolutely convergent series,

3D b T emw

where 1 = by, < b, < b, <..., b, - oo, and the u, are integers. Also,
if the corresponding expansion with —1 changed to -1 yields coeffi-
cients s, then |u,| < un and so

Vil L. o3
@4 i by T1—(Z(0)—1) 2—Z(o)

BEquating coefficients in Z(s)(Z(s)) ' =1 (=1, we obtain
’ 1 =1
Z y— I ( )s
Apbyp =t 0 (u = 1)?

from which we conclude, as in the classical Mobius inversion, that, for
functions defined for all real # and equal to 0 for » < 1, the identities

(a) H(x)-—-Z'h(f:), (b) h(s)=27'ymﬂ(;l)..

(0 = ay).
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(for all real x), are equivalent to one another. We may call (a) the direct,
and (b) the inverse, Mobius formula. To avoid ambiguity in the defini-
tions we take {b,} to consist of all distinct numbers expressible as finite
products of a,’8s with » > 1 (including b, = 1 as the ‘empty’ product);
each pu, is then a uniquely determined integer (positive, negative, or
Zero).

Assuming now the conditions of Theorem 1 (i), we may take o, = 1
(since A < 1); and, if we assume (2) and take k(w) = f,(x), we obtain,
by (2)o,

H ('7-") — 0(3}!

h(x)| < Z';pmﬂ(hi)! = o(x)

by (14) with ¢ = 1, and the Lemma (treating |u,H (2/b,) as a sum of
|| terms |H(x/b,)|), since the condition he¥ implies, by (a), that
|H|eR.

We note also that Theorem 3 may be proved similarly. For, agsuming
the conditions of that theorem and denoting the left hand side of (9)
by a, we have, for ¢ >1,

and so, by (b),

1 1 i 1
1—=)Z(s) =1 el N
( 2,) (8) =1+ 2 R’Zaﬁ’, 14q(s),

say; and so

1 1_1_” '-vll m' 1 A_i
2‘ Bom| 1+ -

- b - 1—a

Z(s) 1+¢(s)’

by an obvious majorization argument. We observe, further, that (since
J < %) the conclusion Z(1+41:)+# 0 of Theorem 4 (N) must hold under
the conditions of Theorem 3. The above formulae provide a direct proof
of this, in the stronger form that Z(s) # 0 (¢ > 1).

7. On the conditions of Theorems 1-4. In general we have adopted
conditions that fit the methods of proof; but it is natural to ask whether
our hypotheses can be widened. We are not able to give full answers to
all the questions that arise, but we offer some miscellaneous observa-
tions.

(i) We consider first the condition, B say, in the definitions of
€, %, #, #, that f(x) is bounded in every bounded interval. This may
certainly be omitted in some cases. Thus, if a, =a" (n =1,2,...)
where a > 1 and {a,} is infinite, then

F(@) = 1@+ (%),
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and (2) implies (1) without any further condition. This holds, more gene-
rally, whenever the inverse Moébins formula contains only a finite num-
ber of non-zero coefficients u,,. A less obvious remark is that this is also
a necessary condition on {a,} for the possibility of omitting B from the
hypotheses of Theorems 1 (i) and 3. For suppose that {a,} does not satisfy
the condition, define F(z) by the formulae

0 (z <1),
1
F(Jz‘)= E (1<m<a1),
A'z (x = a,)

and then define f(z) by the inverse Mé6bius formula. Obviously (2) holds.
But

k
fl@) = Zﬂm-F(;’) (b <@ < bpy),

so that |f(x)| — oo when & > by -, for each & for which u; # 0; and, since
by hypothesis this occurs for arbitrarily large b;, the conclusion (1) can-
not hold. To take a simple example, suppose that {a,} consists of a single
number « > 1. Then b, = a™, u, = (—1)", and Theorem 1 (i) would
break down if we omitted the hypothesis B; and Theorem 3 would break
down similarly in (e.g.) the special case of the example at the end of § 4.
In theorems involving the hypothesis fe.# the question of omitting B
does not arise, since a monotonic function f(z) defined for all real z auto-
matically satisfies B.

(ii) It may seem paradoxical that the conclusion of Theorem 4 (S)
should be invalidated by the vanishing of Z(s) at a point on ¢ =1,
while a zero in ¢ > 1 is harmless. The explanation is to be found in the
hypothesis fe #. If Z(s) has a zero f+ yi with g > 1, the construction
at the end of §5 provides a counter-example to the proposition *(2)
implies (1)’ if we are working within the class € (or #); but we cannot
satisfy the condition fe# (or even fe#) by any choice of b. The point
may be further illustrated by direct discussion of a simple case. Let {a,}
= {a, a} where a > 1; and let

=— |fo(®@)]

¢ = lim (0 <e < ).
x

By (2),
fie) = —26( ) o),

LR AC T

L% R "
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whence
ac = 2¢.

If @ > 2, we can also prove that ¢ < co by the method used at the end of
the proof of Theorem 1 (i) (of which our problem is now a particular
case) and deduce that ¢ = 0 (assuming only that fe%). If a < 2 (in which
case Z(s) has zeros in ¢ > 1 but none on ¢ = 1), this method of proving
that ¢ < oo breaks down. But if feZ (in particular if fe.#) we deduce
from (2) that ¢ < oo, and again we conclude that ¢ = 0. If a = 2, we
reach no conclusion about ¢ (even if fe.f).

This raises the question whether, in Theorem 4 (S), we can relax
the condition on f(x) if we strengthen that on Z(s). If [Z(s) =6 >0
(¢ =1), we may replace the hypothesis fe# by fe%; for it is known in
this case (see, e.g., [4]) that }|u,|/bm < oo, so that the Mobius inverse
argument is applicable. If, however, we assume only that Z(s) #+ 0 (¢>1),
we cannot replace the hypothesis fe.# in Theorem 4 (S) by fe®, or even
by fe#. Since our method of constructing a counter-example, which
involves specialization of both {a,} and f(x), has other applications, we
shall develop it in greater generality than the present context requires.

Suppose that A4 >1, and that the numbers loga, (n =1,2,...)
(of which there are at least two since 4 > 1) are linearly independent.
Then (as we prove later) we can find o, (n = 1,2,...) such that

@y,

(15) wy| =15 — = -1,

Ly

Let @ be the (enumerable) set of numbers ¢ expressible as products
q = ITa;® with exponents r, = 0, +1, +2,... of which at most a finite
number are different from 0 in any one product. Since the loga, are line-
arly independent, the representation of each ¢ is unique and we can define
a funetion o(x) for all real » by the rule:

| [Mox™ (2=g¢>1),

w(x) .
0 (otherwise).

Then w(r/a,) = o(@)w, (= a,; n=0,1,...) if we write w,=1.
Now let

h(z) = zo(z), f(@)=2+R{rh(x)}

with 7 = 1 or ¢ (to be fixed later). Then

H) = ) h(f-) = h(z) -:‘:" = o(a)

Acta Arithmetica IX.4 23
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by (15). But h(x)/x does not tend to any limit, since |h(x)|/z takes each
of the values 1 and 0 for arbitrarily large values of . Thus for at least
one choice of v (=1 or i) we have (2) but not (1); and obviously feZ.

If A =1, we may (and must) take w, = —1 for each n (= 1);
and, taking a fixed d > 0, we have, for ¢ > 1,

Z(s)—1—a| = | Y aze 1% —d| < 1+d,

since, by the linear independence of the loga,, the products tloga, can-
not all be equal to odd multiples of =. Thus Z(s) does not vanish in o > 1,
though |Z (s)| takes arbitrarily small values on ¢ = 1 since, by Kronecker’s
theorem, we can make all of tloga, (if {a,} is finite) or the first N of them
(if {a,} is infinite) arbitrarily near to odd multiples of =. We can satisfy
all conditions on {a,} in various ways; thus we may take a, = p’, where
the p, are distinct primes (at least two in number) and 4 > 0 is adjusted
to make A = 1. The same example (with A = 1) shows that the hypo-
thesis fe.# in Theorem 2 cannot be replaced by feZ.
If 4 >1, we can satisfy (15) in various ways. Thus, writing

1 1
v=)—, 7=3—,
Qn : n

n=N

(so that U4V = 4 > 1), and noting that U—V increases with increas-
ing N from 2a7'—A < 1 to a value equal to or arbitrarily near to 4 > 1
by steps 2/ay < 2, we can choose N go that —1 < U—V < 1. Taking
w, =0 (n <N), ¢ (n>N), we then have to satisfy

Uo+Ve = -1, |[0]=l¢l=1,

and we can find 0 and ¢ by constructing in the complex plane a triangle
of sides U, V,1. In this case Z(s) has an enumerable infinity of zeros
in ¢ > 1, a3 may be proved by methods laid down by H. Bohr (cf. e.g.,
[9], pp. 248-249); and by changing a, to a,™® with a suitable 6 > 0 we
can ensure that Z(s) does not vanish on ¢ = 1. Taking the two cases
A =1 and A > 1 together, we thus see that there exist sequences {a,}
such that (2) implies (1) for functions f belonging to .# but not for fune-
tions belonging to #, regardless of whether or not 7Z(s) has zeros in
ol

(iii) The arithmetical interest of our theorems is somewhat enhane-
ed if the a, are (or can be) restricted to integer values. Thus, if the a,
are distinet integers, Theorem 2 and its Corollary reduce to the simple
gtatement that (2) implies (1) if 4 =1 and fe#. We may ask whether
the heavier restriction on {a,} allows us to substitute for fe.# the weaker
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hypothesis fe#. The following example shows that this is not so. Let
{a,} consist of the 7 integers

a1=2, ﬂ2=3, a3=7, a4=43’

a; = 2.3.7.43+1 = 1807 = 13.139,

a, = 13(2.3.7.43.139 +1) = 13.5.50207,

a, = 2.3.7.43.13.139.5.50207 .
Writing

i F 1
d=[la, R=1-D= @m=1,.,7),
r=1 =1 T

we note that

a.n:An_l"l"l (ﬂ;—_-:z,...’-ﬁ), ﬂ6=A5+13’ 13“1244.6;

and we find, snccessively,

1 -
Rﬂ:j-_n (n=1,...,5), Rj=—
80 A = 1. Also the numbers loga, (n =1,...,7) are linearly indepen-
dent. For, if not, there is a relation
7
ar =1

n=1
with integers r, not all 0; and, by considering the occurrence of the
primes 13, 139, 5, we find that

ritretr, =0, r5+7,=0, rg+r =20,

whence », =#, =7, = 0, and therefore r, =...=r,=0 gince
@, ..., @y are primes. Thus {a,} satisfies the conditions of the case A =1
of the example discussed at length in (ii); so (2) does not imply (1) for
functions f belonging to 2.

The restriction to integral a, may, however, introduce more serious
difficulties. Thus, it would be interesting to have an example in which
the a, are distinct integers and Z(s) vanishes on the line ¢ = 1; but we
have no such example at present. A simple case that escapes all our the-
orems is that in which {a,} = {2,3,5}. It seems extremely unlikely
that Z(s) has a zero precisely on ¢ =1, but we have no proof either
way. We are therefore in no position to say whether, in this case, (2)
implies (1) for functions f belonging to #; though we can assert, by the
case A >1 of the example in (ii), that (2) does not imply (1) for funec-
tions belonging to 2.
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