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5 1. Introduction 

The first problem1 which will be discussed in this paper can be formulated 
as follows: Suppose we are given n coins, which look quite alike, but of which 
some are false. (For instance suppose that t,he right coins consist of gold, while 
the false coins consist mainly of silver and are covered only by a thin layer of 
gold.) The false coins have a smaller weight than the right coins; the weights 
a and b < a of both the right and false coins are known. A scale is given by 
means of which any number 5 n of coins can be weighed together. Thus if we 
select an arbitrary subset of the coins and put them together on the scale, then 
the scale shows us the total weight of these coins, from which it is easy to 
compute the number of false coins among those weighed. The question is what 
is the minimal number ,4(n) of weighings by means of which the right and false 
coins can be separated? It can be seen by an elementary information-theore- 
tical argument that (denoting by log,z the logarithm with base 2 of x) 

(1.1) A(n) 2 n 1% (n -I- 1) * 
As a matter of fact, the amount of information needed is log, 2n = n bits, 
because the subset of the coins consisting of the false coins may be any of the 
2” subsets of the set of all n coins; on the other hand if we put k s n coins on 
the balance, the number of false coins among them may have the values 
0, 1, . . ., k and thus the amount of information given by each weighing can 
not exceed log,{k + 1) 5 log,(n + 1). Thus s weighings can give us at most 
s log& + 1) bits, and thus to get the necessary amount of informat’ion (that 
is n bits) it is necessary that s log,(n + 1) should be not less than n; thus we 
obtain (1.1). On t’he other hand, a trivial upper estimat’e is 

(1.2) A(n) s n 

because if we put the coins one by one after another on the scale then 
clearly these ,n weighings are sufficient. The inequality (1.2) is best possible for 
n = 1, 2 and 3, but already for 1~ = 4 we have A(4) = 3. As a matter of fact 

1 This problem was proposed for n. = 5 by H. S. SEB~IRO [l] and for arbitrary 
n by N. J. FINE [Z]. 
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if we label the 4 coins by the numbers 1, 2, 3, 4 then the following 3 weighings 
are always sufficient’: we put first the coins 1, 2, 3 on the scale, then the 
coins 1, 3, 4 and finally the coins 1, 2 and 4. Let the number of false coins 
among the coins 1,2, 3 befi, that among 1, 3, 4 
f3. The following table gives us the false coins: 

bef, and that a’mong 1, 2,4 be 

fl fi f3 1 2 3 4 

0 0 0 

1 1 1 

1 0 1 

1 1 0 

0 1 1 

2 1 2 

2 2 1 

1 2 2 

2 1 1 

1 1 2 

1 2 1 

3 2 2 

2 2 3 

2 3 2 

2 2 2 

3 3 3 

++-- 

-l--+- 

+--+ 

- + + - 

-- + + 
+l-+- 
++-+ 
f-++ 

--+++ 
+ -t- + -F 

Note that among the possible 64 triples fl, f2, f3 (0 g fj s 3, j = 1,2,3) 
only 16 are possible and each corresponds to a different distribution of 
the false coins. 

It is easy t,o see that in general one has 

(l-3) A(lzm) S A(n) - m 

(because if we have wrn coins we may determine by A(n) weighings from ea’ch 
group of n coins the false ones). Thus from the above example one gets 

and as A(n) is evidently monotonic, we obtain 

(1.4) 

where {x} stands for the least integer 2 x: 
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(1.5) 

It may be guessed2 from this that one has 

This is in fact true; moreover we shall prove in 8 1 that the lower estimate (1.1) 
gives the correct order of magnitude of A(n). We shall prove namely in $2 
(Theorem 1) that for any 6 > 0 we have for n 2 n,(6) 

(1.6) 

(1.7) 

It remains an open question whether the limit 

Em 44 log, n = Q 
n-r+- n 

exists, and if it exists, what is its value? We shall prove in $4 (Theorem 3) 
that 

(l-8) lim inf A(n) log2 n > 0 
=u. 

n-=?+m n 

It follows from (1.8) that if the limit a in (l.‘i) exists one has 2 r a 5 
I_ log, 9 M 3,17. We shall prove in 8 5 that if the problem is modified so that we 
are contented with finding a method of weighing which leads to the separation 
of the false coins with a prescribed probability p < 1 which may be arbitrarily 
near to 1, (supposing that all the 2” possibilities have same probability) then 

-%1+ ) 
hT2 n 

E weighings are sufficient for any E > 0 if ?z is large (Theorem 4). 

Let us return now to the original problem of determining A(n). This 
problem may be formulated as follows: We have to guess an unknown sequence 
of n digits, each digit being equal to 0 or 1. We have the right to select arbitrary 
,,testing” sequences of zeros and ones of length 7t and with respect of each 
such sequence we are told what is the number of places in which a 1 stands both 
in the sequence to be guessed and in our testing sequence. The minimal number 
of testing sequences by means of which the unknown sequence can be uniquely 
determined whatever it may be, is equal to A(n). 

This reformulation of our first problem shows its connection witch the 
second problem which will be discussed in this paper and which is as follows: 
Suppose we want to guess an unknown sequence of n digits, each digit being 
either 0 or 1. Information concerning the unknown sequence may be obtained 
in the following way: We have the right to select arbitrarily ,,testing” sequ- 
ences of digits consisting of zeros and ones and we are told the number of 
places in which the two sequences coincide. Let B(n) denote the minimal num- 
ber of sequences by means of which we can determine the unknown sequence, 
whatever it may be. The problem is to determine the asymptotic behaviour of 
B(n). Clearly we have 

(1.9) 

2 This conjecture was stated in [2]. 
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The inequality (1.9) is obtained by a similar information-theoretical argu- 
ment as that which leads us to (1.1). We have here the same trivial upper 
estimate 

(1.10) B(n) 5 n . 

As a mat’ter of fact, if we select, the n testing sequences 11 . . ,l, 011 . . . 1, 
1011.. . 1, . . *, 111.. . 101 then if k is the number of places in which the 
sequence 11 . . . 1 and the unknown sequence coincide, t’hen the number of 
coincidences between the sequence 011 . . . 1 with the unknown sequence is 
either k - 1 or k + 1 according to whether the first digit of the unknown 
sequence is 1 or 0. Thus by the 2nd, 3rd, . . ., +-th testing sequences we can 
determine the first n - 1 digits of the unknown sequence; the last one can be 
determined because the total number k of ones in the unknown sequence is 
known from the first’ comparison. We have clearly B(n) = 12 for 12 = 1, 2, 3, 4 
and B(5) = 4 as can be seen from the following exa’mple: using the testing 
sequences 

11111 

11100 

01010 

01101 

we can guess any sequence of 5 zero-or-one digits. As a matter of fact we get 
for the number of coincidences the following values for the 16 sequences consist- 
ing of not more than two ones: 

sequence 

11111 

coincidence with 

11100 01010 01101 

00000 
00001 
00010 
00100 
01000 
10000 
00011 
00101 
01001 
10001 
00110 
01010 
10010 
01100 
10100 
11000 

0 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
1 
1 
3 
3 
3 
0 
2 
2 
2 
2 
2 
2 
4 
4 
4 

3 
2 
4 
2 
4 
2 
3 
1 
3 
1 
3 
5 
3 
3 
1 
3 

2 
3 
1 
3 
3 
1 
2 
4 
4 
2 
2 
2 
0 
4 
2 
2 

It is unnecessary to try the other 16 sequences with 3 or more ones, 
because these are obtained by replacing 1 by 0 and 0 by 1 in the above 16 
sequences, and this changes the number of coincidences from z to 5 - x, 
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We shall prove for B(n) the same inequality as obtained for A(n); viz, we 
obt,ain in $3 (Theorem 2) for a’ny 6 > 0 that for n 2: n,(6) 

(1.11) 
n log, 9 

B(n) 5 (1 + S)------- * 
loi42 n 

Here again the question remains open whether the limit 

(1.12) Em B(n) log2 n = p 
a++- n 

exists, and if so what its value is. We shall show in 5 4 (Theorem 5) by the same 
method which we have used to prove Theorem 3 that 

(1.13) lim inf B(n) log2 n 2 2 . 
n-++ ci n 

Thus if the limit ,4 in (1.12) exists, then certainly 2 5 /3 5 log, 9 m 3,17. We 
shall prove also in $5 that if we modify our second problem so that we want 
to determine a fixed but unknown sequence of n zero-or-one digits by the 
number of coincidences with certain testing sequences and we are contented 
with finding it with probability p < 1 which may be arbitrarily near to 1 then 

-%- (I + E) testing sequences are sufficient, (Theorem 6), for any E > 0 if n is 
1x2 n 
large enough. 

Finally let us mention the following geometric interpretation of both 
problems. To any sequence of zeros and ones there corresponds a vertex 
of the unit cube C, of a-dimensional space. The function B(m) can be interpre- 
ted as follows: B(n) denotes the least number such that by selecting B(n) 
suitable chosen vertices of C, each vertex of C, is uniquely determined by its 
distances from the chosen B(n) vertices. 

Now let us interpret any sequence of n zeros and ones as a vector of the 
n-dimensional space leading from the origin to one of the vertices of C,. With 
this interpretation A(n) denotes the least number such that by selecting A(n) 
vectors v,, v2, . S ., 2~~~~) leading to suitably chosen vertices of cn each vector 
v leading to a vertex of C, is uniquely determined by its proJection on the 
A(n) chosen vectors, i. e. by the A(n) numbers (v, or), . . ., (v, vAo-,)) where 
(u, w) denotes the inner product of the vectors v and w. 

We prove our Theorems 1 and 2 by the same method, consisting in a 
random selection of the testing sequences. 

$j 2. An upper estimate for A(n) 

Our first problem can be formulated as follows: What is the least value 
A(n) of s such that there exists a matrix &I having srows and n columns and 
consisting of zeros and ones, such t’hat if we select an arbitrary subset e of the 
set E of the columns of JI, and form the row-sums of the submatrix H(e) con- 
sisting of the selected colums of M, and denote by ZJ, the column-vector 
consisting of these row-sums, then the vectors u, and v,~ are different if e and 
e’ are different subsets of E. We shall call such a matrix an A-matrix. 
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Thus A(n) is the least value of s such that there exists an A-matrix 
with n columns and s rows. Clearly the matrix corresponding to the example 
given in the introduction for n = 4 is the A-matrix 

1110 

(2.1) 1011 

1101 

The 24 = 16 possible column-vectors we are in this case 

0111022121122233 

0101112211223223 

0110121212122323 

and all are different, thus the matrix (2.1) is in fact an A-matrix. 
In order to estimate A(n) we shall prove that if we choose D/p at random 

so that the sn elements of N are independent random variables, each taking 

on the values 0 and 1 with probability f , then therandommatrix M will have 

the required property with positive probability (in fact with probability 

tending to 1 for n -+ + 00) provided that s > (1 + 8) :$fif . 

This can be proved as follows: Let P, .(A) denote the probability that a 
random matrix ill of order sxnis an A-mat&x, and put Qsn (A)=1 - P,,(A). 
Let A(+ e2) (where e, and e2 are different subsets of the set’E of columns of M) 
denote the event that the row-sum vectors.v,, and o,, are identical. Evidently 
if uel = oeg and the sets e, and e2 are not disjoint, then putting e; = e, - e1 e, 
and ei = e2 - e1e2, we have Eli = vei. (Here and in what follows the product of 
sets denotes their intersection and the difference e -f of two sets e and f 
denotes the set of elements of e which do not belong tof). It follows that is M 
is not an A-matrix, then there exist disjoint subsets e, and e2 of the set of its 
columns such that ~1,~ = wes. Thus we obtain that 

(2.2) f&&J) 5 2 Wh 4) 
e*.e3= B 

where the summation has to be extended over every pair of disjoint subsets 
e, and e2 of the set E of the columns of M and 0 denotes the empty set. 

It follows that 

By the well known identity 

we obtain 

Q,,“(A) I 2 
n. I 

__-. 
,5S;k+kes;nkl!k2!(n-kE,-kk,)! 1 
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It follows 

(2.4) 
As 

(2.5) 

Q,,,(A) S 2 (;) 2 
r=I k=O 

(k=O,l,...,r) 

we obtain 

for r = 3, 4, . 1 . (this follows easily by induction) 

(2.6) 

Kow we choose s N .-!k?--. As we have 
log, n 

2 0 

n y=qg 
c nloglogn 

lwn ) 

rsn 
r 

log8 n 

where c > 0 is a constant, it follows that 

(2.7) 

(2.8) 

Qs,n(A) 5 2 21, + o(l) I 
n r> - 

1ogp 
(r+V 

Taking into account t’hat 2 (z) 2T = 3”, we obtain 
r=O 

Q,,(A) s b-f (,Oga 3 - +) + Ocn) 

provided that s = s(n) an N ___ where a > 2 log, 3 = log, 9. It follows 
log2 n 

(2.9) lim Qs(n),n(A) = 0 . 
n-+- 

Now clearly if Qs(nj,n (A) < 1 then P,,,,,, (A) > 0; as P,,,(A) is the pro- 
bability that the random matrix M is an A-matrix, it follows that if 6 > 0 and 

n log, 9 
s > ~ then for ‘II 2 n&s) there exists an A-matrix of order s xn 

log2 n 
which implies A(n) 5 s. Thus we proved the following 

Theorem 1. For any 6 > 0 we have for n 2 no (6) 

(2.10) A(n) g (1 -I- 8) F . 
2 
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Q 3. An upper estimate for B(n) 

Let u = (Ed, Ed, . . ., E,,) and u’ = (E;, E;, . . ., EL) be row-vectors consist- 
ing of n componentSs, each of which is either 0 or 1. Let us put c(u, u’) = 

= n- & .@ Thus c(u, u’) is the number of ,,coincidences” of the 

vectors u and u’, i.e. the number of columns of the 2 xn matrix 
&I . . . E, 

! I E; . . . &A 

which consist of equal elements. By the usual notation I] u 112 = 2 E; we 

have 

WI c(u., u’) = n - 11 2.5 - u’ 11”. 

Let now AI be a matrix having s rows and n columns, and consisting of elements 
0 and 1. Let Us, . . ., U, be the rows of M interpreted as vectors. Let u be an 
arbitrary row-vector consisting of n components which are either 0 or 1. Let U 
denote the set consisting of all 2” such vectors U. To any u there corresponds a 
vector W, consisting of the numbers C(U, uJ, , . ., c(u, u,). The matrix M will be 
called a B-matrix if the 2” vectors W, corresponding t’o different elements u 
of U are all different from each other. Thus if M is a B-matrix, then each 
vector u E U is uniquely determined by the s numbers C(U, uJ, . . ., C(U, u,) 
(and thus also by t’he distances [I u----j /I, i = 1, 2, . . ., 8). Let PS,n(B) 
denote the probability that the random matrix M of order sxn (whose ele- 
ments are independent random variables each taking on the values 0 and 1 with 

probability $ should be a B-matrix, and put Q,,fi(B) = 1 - P,,,(B). 

Let u = (elr . . ., Ed) and u’ = (E;, . . ., E;) be two arbitrary different 
row-vectors consisting of ti components each of which is either 0 or 1, Let 
H and H denote the set of those indices 3c (1 5 k s n) for which .Q = 1 and 
Ed = 0, respectively and similarly let H’ and H’ denot’e the set of those indi- 
ces k (1 -I k 5 n) for which EL = 1 and E; = 0 respe_c_tivdy. Let l&k,,>, and k, 
denot,e t’he number of elements of Ohe sets AH’, HH’, HH’ and H l H’ respec- 
tively. Let Uj = (Gil, . I ., 8jj,) be Dhe j-t’h row of the random matrix M and let 
lj~, 2jzj lj3+d>,, denote the number of those indices k which belong to the sets -- 
HH’, HH’, HH’ and HH’ respectively and for which ejjk = 1. Clearly we have 
c(u, uj) = c(u’, uj) if and only if 

lj, + Liz C k, - lj3 + k, - lj4 = lj, + lj3 f k, - lja ~ k, - lj4 
that is if 

(3.2) 2(1j2 - Zj,) = k, - k, . 

It follows that a necessary condition for C(U, Uj) = c(,u’, ‘-Lj) is that k, - k, 
should be even. and furt’her that 

(3.3) Qs,?m I 
k,+k@,m,,d2 k2!k&-k2-kk,)! 

IS,+k,Sn 
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Now 

and thus 

It follows similarly as in $ 2 that if s = s(n) N a -?.- where a > log,9 then 

1% 9% 

P-5) lim Q,.,,,JB) = 0 . 
n--f- 

Clearly if Q,,,,,(B) < 1 then P ti(,j,,(B) > 0 and thus there exists a B-matrix 
of order s(n) x n and therefore B(n) 5 s(n). Thus we have proved the following 

Theorem 2. For any 6 > 0 and n 1 n,(6) one has 

(3.6) 

(4.1) 

n log, 9 
B(n) 5 (1 + S) ~~~- . 

1% n 

8 4. Lower bounds for -4(n) and B(n) 

In this $ we prove the following results 
Theorem 3. One has 

lim inf Acn) log2 n 2 2 . 
n-b+ - n 

Theorem 4. One has 

(4.2) lim inf B(n) 1% n 2 2 
n++ - n - 

Proof of Theorem 3. Let M be now an arbitrary A-matrix of order sxn. 
Let us divide the row-vectors of M in two classes. A row-vector u of M belongs 
to the first class if it contains less than h elements equal to 1, where h = 

= Vnlog; otherwise it belongs to the second class. We shall give first an upper 
estimate for the number of different column-vectors v, consisting of the row- 
sums of the submatrix M(e) of M consisting of the columns of M belonging to 
the set e; here e is an arbitrary subset of the set E of columns of M. Clearly 
any component of ZI, corresponding to a row belonging to the first class may 
take on at most h different values. On the other hand if a row ztj of M belongs to 
the second class, and contains m ones (m 2 h) then the number of possible 
choices of the subset e of the columns for which the sum of the elements of the 
row uj standing in the selected columns does not lie between the bounds 

t & I Vm log m (where the positive constant 1 will be chosen later) is equal to 

(44 
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According to the Moivre-Laplace theorem we have 

Let us call a subset e of the set E of columns a ,,bad” subset, if there exists a 
row uj belonging to the second class and containing m. ones, for which the sum 
of the elements of ui standing in the columns belonging to e lies outside the 

bounds 124 & il j/m log m. Otherwise we call e a ,,good” subset. Clearly by 
2 

(4.4) if Ndenotes the number of bad subsets we have 

(4.5) 
Thus if X2 2 1 we have 

(4J-5) 

On the other hand, denot,ing by Y the number of different values of the vector 
Ed if e runs over the good subsets, vve have 

(4.7) V 5 hY[ 2 L jhiiii$]s-~ r (2 2 I/n log n)s . 

As M is by supposition an A-ma,trix, the inequality 

(4.8) v72n-A7 

has to be valid, which implies by (4.6) and (4.7) 

(4&g) (2LVnlogn)S 2 2* 1 
- ( -q&l)* 

Thus we obtain that the inequality 

(4.10) 
2n 

SZ 
log, n + O(loglog n) 

holds, from which Theorem 3 immediately follows. 
Proof of Theorem 4. Theorem 4 can be proved in a similar way as we 

proved Theorem 3. The only difference is that the distinction between rows of 
the first and second class is now unnecessary. Let 41 be a B-matrix of order 
s xn. Let U denote again the set of all possible rows of n elements each of 
which is equal either to 0 or to 1. Let ur, u,, . . ., u, denote the rows of the 
matrix M. An element u of U will be called ,,bad” if there is a row uj of M such 
that the number of coincidences c(u, Uj) of u and Uj, does not lie in the interval 

+4w lg n o n; otherwise u will be called ,,good”. If Ndenotes the number of 

,,bad” elements u of U we have by Chebyshev’s inequality 

(4.11) 
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On the other hand if W denotes the number of possible values of the 
vector w, = (c(u, u,), . . ., c(u, u,)) where u runs over the ,,good” elements of 
U, we have 

-- 
(4.12) w s (2 vn log n)S . 

3s ik! is a B-matrix, we have 

(4.13) wr 2”-N. 

Thus it, follows from (4.11) and (4.12) Ohat 

(4.14) 
2n 

A->- 

which proves Theorem 4. 

log, n + O(loglog n) 

0 5. Discussion of a modified form of both problems 

Let U denote again the set of all possible sequences of length 71 consisting 
of zeros and ones. Let M denote again a matrix of order s x ‘12 consisting of 
zeros and ones; let %, . . ., u, denote the rows of M. Let (u, u’) where u E U, 
u’ E U denote the inner product of the vectors u and u’, i.e. the number of 
places in which 1 stands both in u and u’. Let’ c(u, u’) = n --j/u - u’Jj2 denote 
the number of coincidences of the vectors u and u’, i.e. the number of places in 
which the same number stands both in u and u’. A matrix ib! will be called 
a p-A matrix (resp. a p-B matrix) where 0 -C p < 1 if by choosing at 
random an element u of 77 (so that each of the 2” elements of U has the same 
probability to be chosen) t,he probability that u is uniquely determined by the 
sequence of numbers (u, ul), (u, uZ), . . ., (u, us) (resp.. by the sequence c(u, u,), 
4% auz), * . ., c(u, us)) exceeds p. Let sA(n, p) and s,(n, p) respectively denote 
t,he minimal va’lue of s for which a p-A matrix resp. a p-B matrix M of 
order s x n exists. Then the following results hold: 

Theorem 5. For anyfixed p with 0 < p < 1 one has 

(5.1) 

Theorem 6. For any fixed p with 0 < p < 1 one has 

(5.2) 

Proof of Theorems 5 and 6. Let M denote the set of all s x n matrices the 
elements of which are zeros and ones. Let P,(M) and P,(IM) resp. denote the 
probability that by choosing at random an element u of U this element should 
be uniquely determinedbythe sequence (u, u,), (u, uZ), . . ., (u, us) resp. by the 
sequence c(u, u,), c(u, uJ, . . ., c(u, u,) where ul, , . , u, denote the rows of the 
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matrix M. Clearly the assertions that sA(n, p) s s and sB(7t, p) 5 s resp, are 
equivalent to the assertions that 

(5.3) max PA(N) 2 p 
MCM 

and 

(5.4) max P,(M) 2 p . 

Evidently if P,(M) and PJIJI) denote the mean value of P,(M) and 
P,(M) when M is chosen at random so that M may be equal to any element of . 
M with the same probability $, then 

(5.5) 

and 

max PA(M) 2 P,(M) 
MFM 

Thus if we prove that for a certain value of s we have 

and 

it follows that the inequalities sA(n, p) s s and sB(n, p) s s hold. 
Let A(u, M) denote the event that the row vector u E U is uniquely 

determined by the sequence (u, U& . . ., (u, u,) and B(u, M) the event that the 
row vector u E U is uniquely determined by the sequence c(u, uI), . . ., C(U, u,) 
where ul, , . ., u, denote the rows of M. Then evidently 

(5.7) 
and 

PAW) = P(44 M)) 

(53) P,(M) = P(B@, M,) 
where on the right hand side of (5.7) and (5.8) u is a randomly chosen element of 
U and M a randomly chosen element of M. Let us put 

(5.9) 1 - P(-+, M)) = Q,(s, n) 

and 

(5.10) 1 - P(B(u, M)) = Q,(s, n). 

We obtain by a similar argument as that used in 5 2 and $3 resp. 

(5.11) 
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and 
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and 

Using again the inequalities 

it follows that 

(5.13) 

and 

(5.14) 

Thus if s N - we obtain 
1% n 

(5.15) 

and similarly 

(5.16) 

Thus if CI > 2 we have 

(5.17) lim Qn(s, n) = lim Qs(s, n) = 0. 
n-t+- n-+i - 

By (5.9) and (5.10) this implies 

(5.18) lim P(A(2r,M)) = lim P(B(U,H)) = 1 
?I-++- n--t- 

16 A M&xnatikai Kutat6 IntPzet. KBzIem6nyei VIII. A/l--l. 
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and thus by (5.5)-(5.8) if follows 

(5.15) lim max P,(M) = lim max P,(N) = 1 . 
n++- MEM n+-- MEM 

As mentioned above this proves Theorems 5 and 6. 

(Received July 28, 1963.) 
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Remark, added on September 24, 1963 

Since the present paper was given to print’, we have been informed that 
quite a number of mat,hemat,icians worked on the first problem of the present 
paper, and obt,ained result,s which are closely related to our results. None of 
t)hese result’s are published but someof them are in print. As W. MOSER informed 
us, D. G. CANTOR has proved in a paper in print in the Canadian Journal of 
Mathemat’ics the relation (1.5); in fact, he obtained the estimate A(n) = 

L. XOSER (University of Alberta, Edmonton) informed us 

that, ‘he obtained together with ABBOT, that 

While this upper bound is greater by the factor “/, t’han our bound log,9, the 
method of proof applied by ABBOTT and L. XOSER has the advantage that it is 

constructive; they exhibit effectively A-matrices of size s x 12 where SN 
n log, 27 

log, 72 * 
The same result has been obtained by II. S. SHAPIRO and S. S~DERBERG. 

Their paper is in print in the AmeCcan Xafhemafica2 Monthly. E. R. BERLEHAMP 
(Bell Telephone Laboratories) has obt#ained by a method, essentially the same 
as our method. that 

A(n) s s . 
a2 

This result is slightly better than our result (1.6) {by the factor 1 + 5). To get 
rid of the unnecessary factor (1 + 6) one has to use instead of the rough esti- 
mate (2.5) a sharper estimate following from Stirling’s formula. 

BERLEKAMP conjectured also that (1.8) holds and gave a heuristic 
argument for his conjecture. 

Other proofs of (1.8) have been given by B. GORDON (University of 
California, Los Angeles) and L. MOSER. E. NIYKM has also proved that 

A(n) = 0 
f i &Q t 

ui ,e recently B. LINDSTR~M (University of Stockholm) 

has proved the conject’ure (1.7) with a = 2. His paper will be printed in the 
next issue of this journal. 



Oh' TN0 PROBLEbIh OEINF'ORhfATlOS TWEOP,! 243 

0 P(BYX IIPOEJIEMAX TEOPIIH WH@OPMALJMM 

P. ERDCiS II A. RtiNTI 

Pemme 

nyCTb LT MHo)tieCTBo BCeX 2" FlOCJIeJOBaTenbHOCTe~ (El, E2' . . . . E,) r&e 
E,, = 0 km4 &k = 1 (k= 1, 2, . ., n). nYCTb dl HeKOTOpaR MaTpHIJa C pa3Me- 
paMti tYXn, 3JleMeHTbl KOTOpO% BCe paBHbl WIR 0 MnkI 1. nyCTb U1' . . . . Us 
CTpOKM MaTpI?IJbI h?. ~OnOWUvl fiNI II = (El, . . ., E,)F. u II U'= (E; . . ., E;)EU 

Ha3blBaeTCR A-MaTpLlqO8 (COOTB. B-MaTplluOti) eCnM BCe 3neMeHTbI U OT L' 
ofiH03Hawo 0npefleneHbr 3aAaHaeM wcen (u, uJ, . ., (w us) (COOTB. wceJ~ 

c (u, Qr . ., c(u, ,u,)); nycTbA(n)(~00TB.B(~~,))03Ha~aeT MmkiManbrJoe 3HaYeHMe 
S AJIB KOTOpOrO CyweCTByeT A-MaTpHIla (COOTB. B-Marpkiqa) c pa3MepaMH 
sxn. 

B pa6oTe aoKa3aHo, YTO 

2 < lim inf 
A(n) log, ?a A(n) log, n 

- n 
5 lim sup I log, 9 

IF--- *---.s n - 


