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§ 1. Introduction

The first problem?! which will be discussed in this paper can be formulated
as follows: Suppose we are given n coins, which look quite alike, but of which
some are false. (For instance suppose that the right coins consist of gold, while
the false coins consist mainly of silver and are covered only by a thin layer of
gold.) The false coins have a smaller weight than the right coins; the weights
@ and b < a of both the right and false coins are known. A scale is given by
means of which any number < »n of coins can be weighed together. Thus if we
select an arbitrary subset of the coins and put them together on the scale, then
the scale shows us the total weight of these coins, from which it is easy to
compute the number of false coins among those weighed. The question is what
is the minimal number A(n) of weighings by means of which the right and false
coins can be separated? It can be seen by an elementary information-theore-
tical argument that (denoting by log,x the logarithm with base 2 of z)

1.1 T T
) ™ 2 fogatn + 1)

As a matter of fact, the amount of information needed is log, 2" = n bits,
because the subset of the coins consisting of the false coins may be any of the
2" subsets of the set of all z coins; on the other hand if we put ¥ < n coins on
the balance, the number of false coins among them may have the values
0, 1, ... %k and thus the amount of information given by each weighing can
not exceed log,(k -+ 1) < log,(n 4+ 1). Thus s weighings can give us at most
s log,(n -+ 1) bits, and thus to get the necessary amount of information (that
is m bits) it is necessary that s log,(n + 1) should be not less than n; thus we
obtain (1.1). On the other hand, a trivial upper estimate is

(1.2) An) = n

because if we put the coins one by one after another on the scale then
clearly these n weighings are sufficient. The inequality (1.2) is best possible for
n = 1, 2 and 3, but already for n = 4 we have 4(4) = 3. As a matter of fact

1 This problem was proposed for n =25 by H.S. Smariro [1] and for arbitrary
n by N.J. Fine [2].
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if we label the 4 coins by the numbers 1, 2, 8, 4 then the following 3 weighings
are always sufficient: we put first the coins 1, 2, 3 on the scale, then the
coins 1, 3, 4 and finally the coins 1, 2 and 4. Let the number of false coins
among the coins 1, 2, 3 be f;, that among 1, 3, 4 be f, and that among 1, 2, 4 be
fs5. The following table gives us the false coins:

I fa 7s I 2 3 4
0 0 o0 _- = = —
1 1 1 + - — —
1 0 1 - 4+ - —
1 1 0 - — 4+ -
0 1 1 - - — +
2 1 2 L . N
2 2 1 + - 4+ —
1 2 2 + - — +
2 1 1 - 4+ + —
1 1 2 — 4+ — 4+
1 2 1 L ows oy wfe
3 2 2 + 4+ 4+ —
2 2 38 + + — +
5 4 + — 4+ +
2 2 2 — + + +
3 3 3 + + + 4+

Note that among the possible 64 triples 7, f,, f, (0= f, £ 3, 1=1,2,3)
only 16 are possible and each corresponds to a different distribution of
the false coins.

It is easy to see that in general one has
(1.3) A(nm) < A(n)-m

(because if we have nm coins we may determine by A(n) weighings from each
group of n coins the false ones). Thus from the above example one gets

A(dn) < 3n

and as A(n) is evidently monotonic, we obtain
(1.4) A{n)é[fﬂm

where {2} stands for the least integer = x
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It may be guessed? from this that one has
(1.5) fiig 200

N=r+ = n

0.

This is in fact true; moreover we shall prove in § 1 that the lower estimate (1.1)
gives the correct order of magnitude of A(n). We shall prove namely in § 2
{Theorem 1) that for any 6 > 0 we have for n = n,(d)

n-log, 9
log, n

It remains an open gquestion whether the limit

(1.6) A(n) = (1 +9)

N4 e n

exists, and if it exists, what is its value? We shall prove in § 4 (Theorem 3)
that

(1.8) lim inf

s+t oo

A(n)log, n P
——— &,

It follows from (1.8) that if the limit o in (1.7) exists one has 2 < a <
< log, 9 ~< 3,17. We shall prove in § 5 that if the problem is modified so that we
are contented with finding a method of weighing which leads to the separation
of the false coins with a prescribed probability p < 1 which may be arbitrarily
near to 1, (supposing that all the 2" possibilities have same probability) then

2n

log, n

. Let us return now to the original problem of determining A(n). This
problem may be formulated as follows: We have to guess an unknown sequence
of n digits, each digit being equal to 0 or 1. We have the right to select arbitrary
,.testing”’ sequences of zeros and ones of length » and with respect of each
such sequence we are told what is the number of places in which a 1 stands both
in the sequence to be guessed and in our testing sequence. The minimal number
of testing sequences by means of which the unknown sequence can be uniquely
determined whatever it may be, is equal to A(n).

This reformulation of our first problem shows its connection with the
second problem which will be discussed in this paper and which is as follows:
Suppose we want to guess an unknown sequence of n digits, each digit being
either 0 or 1. Information concerning the unknown sequence may be obtained
in the following way: We have the right to select arbitrarily ,,testing” sequ-
ences of digits consisting of zeros and ones and we are told the number of
places in which the two sequences coincide. Let B(n) denote the minimal num-
ber of sequences by means of which we can determine the unknown sequence,
whatever it may be. The problem is to determine the asymptotic behaviour of
B(n). Clearly we have

(1 + &) weighings are sufficient for any ¢ > 0 if n is large (Theorem 4).

n

1.9) Bl e— .
( log, (n + 1)

2 This conjecture was stated in [2].
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The inequality (1.9) is obtained by a similar information-theoretical argu-
ment as that which leads us to (1.1). We have here the same trivial upper
estimate

(1.10) Bn)<n.

As a matter of fact, if we select the n testing sequences 11...1, 011...1,
1011...1, ..., 111...101 then if k is the number of places in which the
sequence 11...1 and the unknown sequence coincide, then the number of
coincidences between the sequence 011...1 with the unknown sequence is
either k— 1 or % 4 1 according to whether the first digit of the unknown
sequence is 1 or 0. Thus by the 2nd, 3rd, . . ., n—th testing sequences we can
determine the first n — 1 digits of the unknown sequence; the last one can be
determined because the total number k of ones in the unknown sequence is
known from the first comparison. We have clearly B(n) =nforn =1, 2, 3, 4
and B(5) = 4 as can be seen from the following example: using the testing
sequences
11111

11100
01010
01101
we can guess any sequence of 5 zero-or-one digits. As a matter of fact we get

for the number of coincidences the following values for the 16 sequences consist-
ing of not more than two ones:

sequence coincidence with

11111 11100 01010 01101
00000 0 2 3 2
00001 1 1 2 3
00010 1 1 4 1
00100 1 3 2 3
01000 1 3 4 3
10000 1 3 2 1
00011 2 0 3 2
00101 2 2 1 4
01001 2 2 3 4
10001 2 2 1 2
00110 2 2 3 2
01010 2 2 5 2
10010 2 2 3 0
01100 2 4 3 4
10100 2 4 I 2
11000 2 4 3 2

It is unnecessary to try the other 16 sequences with 3 or more ones,
because these are obtained by replacing 1 by 0 and 0 by L in the above 16
sequences, and this changes the number of coincidences from z to 5 — z.
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We shall prove for B(n) the same inequality as obtained for 4(n); viz. we
obtain in § 8 (Theorem 2) for any é > 0 that for n > 2,(d)

(1.12) B(n) < (1 + 8)"2089
0g, 12
Here again the question remains open whether the limit
(1.12) i ZHONRE
N> o n

exists, and if so what its value is. We shall show in § 4 (Theorem 5) by the same
method which we have used to prove Theorem 3 that
(1.18) lim infﬂi)i—o—-w

N—rt oo

59

Thus if the limit § in (1.12) exists, then certainly 2 < § < log, 9 ~ 3,17. We
shall prove also in § 5 that if we modify our second problem so that we want
to determine a fixed but unknown sequence of n zero-or-one digits by the
number of coincidences with certain testing sequences and we are contented
with finding it with probability p < 1 which may be arbitrarily near to 1 then

2n

log, n
large enough.

Finally let us mention the following geometric interpretation of both
problems. To any sequence of zeros and ones there corresponds a vertex
of the unit cube C, of n-dimensional space. The function B(n) can be interpre-
ted as follows: B(n) denotes the least number such that by selecting B(n)
suitable chosen vertices of U, each vertex of C,, is uniquely determined by its
distances from the chosen B(n) vertices.

Now let us interpret any sequence of = zeros and ones as a vector of the
n-dimensional space leading from the origin to one of the vertices of C,. With
this interpretation A(n) denotes the least number such that by selecting A4(n)
vectors vy, v,, . . ., ¥, leading to suitably chosen vertices of C,, each vector
v leading to a vertex of C, is uniquely determined by its projection on the
A(n) chosen vectors, i. e. by the A(n) numbers (v, v;), ..., (v, v4,) Where
(v, w) denotes the inner product of the vectors v and w.

We prove our Theorems 1 and 2 by the same method, consisting in a
random selection of the testing sequences.

(1 4 ¢) testing sequences are sufficient, (Theorem 6}, for any ¢ > 0if n is

§ 2. An upper estimate for A4(n)

Our first problem can be formulated as follows: What is the least value
A(n) of s such that there cxists a matrix M having srows and » columns and
consisting of zeros and ones, such that if we select an arbitrary subset ¢ of the
set E of the columns of M, and form the row-sums of the submatrix M (e) con-
sisting of the selected colums of M, and denote by v, the column-vector
consisting of these row-sums, then the vectors ¢, and o, are different if ¢ and
¢’ are different subsets of . We shall call such a matrix an 4-matrix,
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Thus A(n) is the least value of s such that there exists an 4-maftrix
with » columns and s rows. Clearly the matrix corresponding to the example
given in the introduction for » = 4 is the 4-matrix

1110
(2.1) 1011
1101

The 2¢ = 16 possible column-vectors v, are in this case

0111022121122233
0101112211223223
0110121212122323
and all are different, thus the matrix (2.1) is in fact an 4-matrix.
In order to estimate A(n) we shall prove that if we choose M at random
so that the sn elements of M are independent random variables, each taking

on the values 0 and 1 with probability %, then therandom matrix M will have

the required property with positive probability (in fact with probability

tending to 1 for n — + o) provided that s > (1 + 4) ’-’31-]3.5&

82
This can be proved as follows: Let P ,(A4) denote the probability that a
random matrix M of order s X nis an A-matrix, and put @, (4)=1— P, (4).
Let A(e,, ¢,) (where ¢, and e, are different subsets of the set £ of columns of M)
denote the event that the row-sum vectors v,, and v,, are identical. Evidently
if v,, = v,, and the sets ¢, and ¢, are not disjoint, then putting e; = ¢, —e; 6
and e; = €, — e,6,, we have v, = v,;. (Here and in what follows the product of
sets denotes their intersection and the difference e — f of two sets e and f
denotes the set of elements of e which do not belong to f). It follows that is M
is not an A-matrix, then there exist disjoint subsets ¢, and e, of the set of its
columns such that v, = »,,. Thus we obtain that
(22) Qs,n(A‘) é . 22:; P(A(el’ 32))
where the summation has to be extended over every pair of disjoint subsets
e, and e, of the set K of the columns of M and @& denotes the empty set.
It follows that
ki) (k)
ik

s
n! =0 )
(2.3) Qs.n(A) = 2 z ”{2! (n — k‘l _ kz)[ ( 9k, + ke

1Sk thisn 11
By the well known identity

3Lt
s i1 ky

(%]
Q. ()= > L )( by )

= 1Sk, +k.<n kl' kz‘(n —_ kl Y kz ! ok, + ke

mingk,ky)

we obtain
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Tt follows
r s+1
(2.4) Q (A)si""’]zr[k
L ~\rlE 27
As
7
(2.5) [;]g(%]) (k=0,1,...,7)
r
further ([%J) = V-g—llr-—l for r = 3, 4, ... (this follows easily by induction)
: T
we obtain
4n? 2y (n ar
2, A= —
(2.6) Qs T+ 31—
F=3 (r+1)?
Y an
Now we choose § ~ . As we have
log, n
nloglogn
3 [7)r-oe=n
'Sﬁézg_ﬁ
where ¢ > 0 is a constant, it follows that
n or
(27 Q,.(4) = ") =+ o).
> (?‘ + 1)2

login

5 (n
Taking into account that 2 [r 2" = 3", we obtain
r=0

29 Q,(4) 5 2" (o%F =)+
provided that s = s(n) ~ I A% wherea > 2 log, 3 =log,9. Itfollows
0g, n
(2.9) lim @ (4) =0.
=+t oo

Now clearly if @y, (4) <1 then Py, (4) > 0; as P, ,(4) is the pro-
bability that the random matrix M is an A-matrix, it follows that if 6 > 0 and
> nl_logig then for n = #n,(6) there exists an A-matrix of order sxn
og,n
which ir_rzlplies A(n) < s. Thus we proved the following

Theorem 1. For any 6 > 0 we have for n = n, (6)

(2.10) Aln) < (1 + 5) 10822
log, n




236 ERDOS—RENYI

§ 3. An upper estimate for B(n)

Let w = (&, &, ..., &,) and w” = (&, &, . . ., &,) be row-vectors consist-
ing of » components, each of which is either 0 or 1. Let us put c(u, »’) =
n

=n— > (e;— &) Thus c(u, w’) is the number of ,coincidences” of the

i=1

% i By v &
vectors u# and wu’, i.e. the number of columns of the 2 xn matrix f &
51 A B;l
n

which consist of equal elements. By the usual notation ||z |]2= 23 & we
=1

have
(3.1) clu,w)=n—|u—u"|?

Let now M be a matrix having s rows and n columns, and consisting of elements
0 and 1. Let u,, . . ., u, be the rows of M interpreted as vectors. Let u be an
arbitrary row-vector conmstmg of n components which are either 0 or 1. Let U
denote the set consisting of all 2" such vectors . To a.ny u there corresponds a

vector W, consisting of the numbers ¢(, w,), . . ., ¢(%, %,). The matrix M will be
called a B-matrix if the 27 vectors Wy corresPOndmg Yo different eloments u

of U are all different from each other. Thus if M is a B- matrix, then each
vector u € U is uniquely determined by the s numbers c(u, u,), .. ., clu, u,)
(and thus also by the distances |[|u—u;||, =1, 2,..., s). Let P, (B)
denote the probability that the random matrix M of order sxn (whose ele-
ments are 1ndependent random variables each taking on the values 0 and 1 with

probability -é- should be a B-matrix, and put @,,(B) =1— P, (B).

Let w = (g, ..., &) and w’ = (e, ..., &,) be two arbitrary different
row-vectors consisting of m components each of which is either 0 or 1. Let
H and H denote the set of those indices k(1 < k < n) for which ¢ = 1and
g, = 0, respectively and similarly let H” and H” denote the set of those indi-
ces k(1 < k < n) for which &, = 1 and ex = 0 respectively. Let &y, &, kyand k&,
denote the number of elements of the sets HH’, HH’, HH  and H + H’ reSpec-
twelv Let u; = (8, . . ., #;,) be the j-th row of the random matrix M and let

L ljz, l;; @ ami I denote the "humber of those indices & which belong to the sets

‘, HH’, HH’ and HH’ respectively and for which #,, = 1. Clearly we have

c{u u ;)= c(ea u;)if and only if

i lptks—lsthk—ly=l +ls+k—1+k—1
that is if
(3.2) 2(1;2—31‘}3) =k, —k;.

It follows that a necessary condition for c(u, u;) = c(u’, u;) is that k, —k;
should be even, and further that

otk
22 ,kz] ks 8§
| =0 ( I —_ k ; k
n .
3'3) Qs,n(‘B) = .
( Ko+ ky=0mod 2 kzl ksl (n —ky— k3)l Dk +ks

1Sk +ksn
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Now Lol
k, k, ks + ks
= I _ k= :(kz+k3
2 2
and thus
n 278
G ()

3.4 Q.. (B < gar| L1
o8 s Sl
It follows similarly as in § 2 that if s = s(n) ~ a ; where a>log,9 then

0g, 7
(3.5) lim Qg ,(B)=0.
N+t e

Clearly if @, (B) <1 then P, (B) > 0 and thus there exists a B-matrix
of order s(n) X and therefore B(n) < s(n). Thus we have proved the following

Theorem 2. For any 6 > 0 and n = n,(8) one has
nlog,9

(3.6) B(n) < (1 + 0) e
2

§ 4. Lower bounds for A(n) and B(n)

In this § we prove the following results
Theorem 3. One has
A(n)log,n

(4.1) lim inf =2,
H—>—+ o "
Theorem 4. One has
(4.2) liminf 218" 5 o
st n

Proof of Theorem 3. Let M be now an arbitrary 4-matrix of order s x n.
Let us divide the row-vectors of M in two classes. A row-vector » of M belongs
to the first class if it contains less than % elements equal to 1, where h =

= | nlog n; otherwise it belongs to the second class. We shall give first an upper
estimate for the number of different column-vectors v, consisting of the row-
sums of the submatrix M (e) of M consisting of the columns of M helonging to
the set ¢; here e is an arbitrary subset of the set £ of columns of M. Clearly
any component of #, corresponding to a row belonging to the first class may
take on at most % different values. On the other hand if a row «; of M belongs to
the second class, and contains m ones (m = k) then the number of possible
choices of the subset e of the columns for which the sum of the elements of the
row u; standing in the selected columns does not lie between the bounds

% + 2 }mlog m (where the positive constant 1 will be chosen later) is equal to

(4.3) g2n-m [mJ .
|k— %“ > A}fmlogm k
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According to the Moivre—Laplace theorem we have

m
T 7 i
k

(4.4)

21 *
’k—?]>.a}'mlogm[ e

Let us call a subset e of the set E of columns a ,,bad” subset, if there exists a
row u; belonging to the second class and containing m ones, for which the sum
of the e]ements of u; standing in the columns belonging to ¢ lies outside the

bounds = + 2 Jm log m. Otherwise we call ¢ a ,good” subset. Clearly by
2
(4.4) if N denotes the number of bad subsets we have

(4.5) [ ]ﬁ L ] .
h2* n*-1 (log n)*
Thus if 22 > 1 we have
(4.6) Nzo[ﬂ’_~
logn

On the other hand, denoting by V the number of different values of the vector
v, if e runs over the good subsets, we have

(4.7) V < W22 )nlognl—> < (24 [nlogn)s .
As M is by supposition an 4-matrix, the inequality
(4.8) Vzeor—N

has to be valid, which implies by (4.6) and (4.7)
(4.9) (24 )nlogn)s = 2"(1 =0 [LJ] .
\ llog n

Thus we obtain that the inequality
2n

~ log, 7 + O(loglog n)

holds, from which Theorem 3 immediately follows.

Proof of Theorem 4. Theorem 4 can be proved in a similar way as we
proved Theorem 3. The only difference is that the distinction between rows of
the first and second class is now unnecessary. Let M be a B-matrix of order
sxn. Let U denote again the set of all possible rows of » elements each of
which is equal either to 0 or to 1. Let u,, u,, . . ., u, denote the rows of the
matrix M. An element » of U will be called ,,bad” if there is a row u; of M such
that the number of coincidences ¢(u, u;) of u and u;, does not lie in the interval

(4.10)

; + AYnlog n; otherwise « will be called ,,good”. If N denotes the number of
,,bad” elements u of U we have by Chebyshev’s inequality

2!1
(4.11) N:O[ .
logn
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On the other hand if W denotes the number of possible values of the

vector w, = (c{u, u,), . . ., ¢(u, u;)) where u runs over the ,,good”” elements of
U, we have
(4.12) W < (2)nlogn) .

As M is a B-matrix, we have
(4.13) W=2"—N.
Thus it follows from (4.11) and (4.12) that

2n

(4.14) &2
log, n + O(loglog )

which proves Theorem 4.

§ 5. Discussion of a modified form of both problems

Let U denote again the set of all possible sequences of length n consisting
of zeros and ones. Let M denote again a matrix of order sXn consisting of
zeros and ones; let u,, . . ., u, denote the rows of M. Let (u, ") where u ¢ U,
u’ € U denote the inner produet of the vectors # and «’, i.e. the number of
places in which 1 stands both in wand «’. Let ¢(u, ') = n —|ju — «’||* denote
the number of coincidences of the vectors «and »’,i.e. the number of places in
which the same number stands both in # and »’. A matrix M will be called
a p-A matrix (resp. a p-B matrix) where 0 < p <1 if by choosing at
random an element % of U (so that each of the 2”7 elements of U has the same
probability to be chosen) the probability that « is uniquely determined by the
sequence of numbers (u, u,), (4, %,), ..., (&, 4,) (resp.. by the sequence ¢(u, u,),
o(u, uy), ..., c(u, u,))exceeds p. Let s,(n, p) and sg(n, p) respectively denote
the minimal value of s for which a p-4 matrix resp. a p-B matrix M of
order s X n exists. Then the following results hold:

Theorem 5. For any fized p with 0 < p < 1 one has

. Su(n,p)
(5.1) HEEL RTR 1
log, n

Theorem 6. For any fized p with 0 < p < 1 one has

(5.2) Jim. ls—"(z% s,

log, n

Proof of Theorems 5 and 6. Let M denote the set of all s xn matrices the
elements of which are zeros and ones. Let P (M) and Pg(M) resp. denote the
robability that by choosing at random an element % of U this element should
Ee uniquely determined by the sequence (u, u,), (#, ), . - ., (&, %) resp. by the
sequence c(u, w,), c(u, uy), - . ., c(u, us) where uy, . ., u; denote the rows of the




240 ERDOS—RENYI

matrix M. Clearly the assertions that s,(n, p) < s and sgz(n, p) < s resp. are
equivalent to the assertions that

(5.3) max P,(M) = p
Mém

and

(5.4) max Py(M)=p.
Mer

Evidently if P,(M) and Pg(M) denote the mean value of P,(M) and
P,(M) when M is chosen at random so that M may be equal to any element of

M with the same probability 21” , then

(5.5) max P (M) = P, (M)
MEM

and

(5.6) max Py(M) > Py(M) .
MeM

Thus if we prove that for a certain value of s we have

P.M) 2 p
and

it follows that the inequalities s,(n, p) < s and sg(n, p) < s hold.
Let A(u, M) denote the event that the row vector u € U is uniquely
determined by the sequence (u,w,), . . ., (u, u,) and B(u, M) the event that the

Tow vector € U is uniquely determined by the sequence c(u, u,), . . ., c(%, u,)
where u,, . . ., 4, denote the rows of M. Then evidently

(6.7) P (M)= P(A(u, M))

and

(5.8) Py(M) = P(B(u, M))

where on the right hand side of (5.7) and (5.8) » is a randomly chosen element of
U and M a randomly chosen element of M. Let us put

(5.9) 1 —P(A(u, M)) = @48, 7)
and
(5.10) 1 — P(B(u, M)) = Qp(s, n).

We obtain by a similar argument as that used in § 2 and § 3 resp.
[

yels]

5. Q.m< S*L
(5.11) A(sn)sgfij,Z

i+j=0
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i+
(W-]
n) 1 l Hn— ] 2
k' 2" i=jmod2 - 2t

i+j=0

and

(5.12)

and therefore

Q5,7 < {;,S ) zi] 2

and

i ViF1
it follows that
1)
= l
(5.13) Q,(s,n) < 2 T
and
E
[2 21
5.14 5
(5.14) M)_Z TR
Thus if § ~ % we obtain
log, n

ay nloglogn
(5.15) Q (s, n) < 2"(1_ f] ’ 0( logn )
and similarly

a ‘nlog logm |
(5.16) Q,s,n) < ghit= z) vl g )
Thus if @ > 2 we have
(5.17) hin Q,(s,n) = 11131 Qg(s,n) = 0.

By (5.9) and (5.10) this implies
(5.18) lim P(A(u, M)) = lim P(B(u,M))=1
N—r+ oo n—b e

16 A Matematikai Kutaté Intézet Kozleményei VIIL Af1—2
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and thus by (5.5)—(5.8) if follows
(5.19) lim max P, (M) = lim maxPy(M}=1.

N+ MEM n—>—o MEM
As mentioned above this proves Theorems 5 and 6.

(Received July 28, 1963.)
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Remark, added on september 24, 1963

Since the present paper was given to print, we have been informed that
quite a number of mathematicians worked on the first problem of the present
paper, and obtained results which are closely related to our results. None of
these results are published but some of them are in print. As W. MosER informed
us, D. G. CANTOR has proved in a paper in print in the Canadian Journal of
Mathematics the relation (1.5); in fact he obtained the estimate A(n) =

=0 nlcvg__lw-J . L. Mosgr (University of Alberta, Edmonton) informed us

| logn
that, he obtained together with ABBOT, that
(*) limsup Ain) loggn < log, 27 .
Nn——+ oo T

While this upper bound is greater by the factor 3], than our bound log,9, the
method of proof applied by ABBOTT and L. MoSER has the advantage that it is
n log, 27
_ log, n
The same result has been obtained by H. 8. SHAPIRO and S. SODERBERG.
Their paper is in print in the American Mathematical Monthly. E. R. BERLEKAMP
(Bell Telephone Laboratories) has obtained by a method, essentially the same
as our method. that

constructive; they exhibit effectively A-matrices of size s x n where s~

Ay < 1089
log,n

This result is slightly better than our result (1.6) (by the factor 1 -~ ). To get
rid of the unnecessary factor (1 4 8) one has to use instead of the rough esti-
mate (2.5) a sharper estimate following from Stirling’s formula.

BERLEKAMP conjectured also that (1.8) holds, and gave a heuristic
argument for his conjecture.

Other proofs of (1.8) have been given by B. Gorpox (University of
California, Los Angeles) and L. Moser. E. Mirts has also proved that

A(n) = 0(1 s

} . Quite recently B. Lixpstrom (University of Stockholm)
og n

has proved the conjecture (1.7) with a = 2. His paper will be printed in the
next issue of this journal.
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0 IBYX MNPOBJIEMAX TEOPHH HH®OPMALIMH
P. ERDOS u A. RENYI

Pesome

Mycts U muoykecTBO Beex 2" mocsefoBaTenbHOCTeH (&, &, ..., &,) THe
g ==0wm g =1 (k=1, 2...., n). [lyctb M HexoTOpas MaTpula ¢ pasme-
pamu s>7n, 3TIEMEHTH KOTOpO# Bce paBHbl unl O wimm 1. Tlyete oy, .. ., U
crpokn Matpuubl M. [Monoxxum jaast w= (e ..., e )eU n u' = (e ..., ep)eU

n L
(w, ) = e eh u c(u,u)=n— 2 (6 — )2 =n—|u—u'|2 Matpua M
k=1

HasbiBaercsi A-marpuuoft (coors. B-marpuuoit) ecnum Bce anemeHTsl u 0T U
0jIHO3HAYHO OTpejieieHbl 3ajaHuem uducen (u, wy), ..., (w, u,) (COOTB. 4HCe]
clu, uy), .. ., c(u, u)): Iycrb A(n) (cooTs. B(n)) 03HayaeT MUHMMaJbHOE 3HaYeHUe
§ s KoToporo cymiecTByeT A-marTpuua (cooTs. B-maTpulla) ¢ pasmepamu
s Xn.

B pabore pokazano, uto

A(n ) A
P ol R sup% < Togs 8
I e Nt = "
4
2 < lim inf jl}}:&‘f : < limsup B(n_)?_gz e < log, 9
N—L e Nt o

1u*




