ON THE STRUCTURE OF LINEAR GRAPHS

BY
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ABSTRACT

Denote by G(n: m) a graph of n vertices and m edges. We prove that every
G(n; [#2/4] + 1) contains a circuit of / edges for every 3 < I < eon, also
that every G(n; [#2/4] + 1) contains a k.(un, u,) with u, = [e; logn] (for
the definition of k.(u,.u,) see the introduction). Finally for ¢t > #; every
G(n; [tn*2]) contains a circuit of 2/ edges for 2 < 1 < c;t2.

G(n: m) will denote a graph of n vertices and m edges, K(p) will denote the
complete graph of p vertices, and K(p, p) will denote the complete bipartite graph
of 2p vertices. More generally K(p,,---, p,) denotes the r-chromatic graph where
there are p, vertices of the i-th color and any two vertices of diferent color are
adjacent. K (p;,--,p,), P1 =P <+ = p,, will denote a K(p;,---, p,) where
two vertices of the first color are adjacent, i.e. K. (p,,---,p,) is a K(p4, . p,)
with an extra edge. The vertices of G will be denoted by x, x;, y,-;
the edge connecting x and y will be denoted by (x,»). (G — x; — -+ — x,)
denotes the graph G from which the vertices x,,---,x, and all edges which are
incident to them have been deleted. o(x), the valency of x, is the number of edges
adjacent to x. C; will denote a circuit having I edges. ¢,,c,,-+ denote suitable
positive absolute constants. [f] is the greatest integer not exceeding f.

A special case of a well known theorem of Turdn [1] states that every
G(n:[n*/4] +1) contains a K(3) (ie. a triangle). Dirac and I observed
(independently) that every G(n; [n*/4] + 1) contains for every 4 < k < n a sub-
graph G(k;[k*/4] + 1) and in fact Dirac proved a more general theorem [2].

In the present paper we continue the investigation of the structure of the graphs
G(n; [n*/4] + 1) and we are going to prove the following theorems:

TueOREM 1. Put[c, logn] = u,. Every G(n; [n®/4] + 1) contains a K (u,.u,).

REMARK. The structure of K (u,.t,) is clearly uniquely determined. It is the
G(2u,; u? + 1) which contains a K(u,,u,) as a subgraph.

THEOREM 2. Every G(n; [n*/4]+1) contains a C, for every 3<1Z cpn.

THEOREM 3. Let i>1,, then every G(n; [in**]) contains a C, for every
2l <yt
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Apart from the value of ¢; Theorem 1 is best possible. In fact we can show
the following

THEOREM 4. To every &> 0 there is a c(e) so that for every n there is a
G(n; [(5(1 — &)]) which does not contain a K([c(e)logn], [c(s)logn]).

We suppress the proof of Theorem 4 since it uses the methods used in [3].
A theorem of A. H. Stone and myself [4] implies that every G(n; [en*]) contains
a K([c,(e)logn], [c,(e)logn]). The exact determination of c(¢) and c,(s) seems
difficult.

Iwould expect that the exact determination of ¢, in Theorem 2 will be difficult.

Theorem 3 is best possible in the sense that E. Klein [5] showed that there is a
G(n; [c,n*]) which contains no C,. For t>t, perhaps every G(n; [tn*'?])
contains a C,, for every 2 <1< ¢stn'?; if true, then apart from the value of c5
this is easily seen to be best possible.

By the same method as used in the proof of Theorem 1 we can prove

THEOREM 5. To every k there is an ny = ny(k) and a ¢; so that, for n> n,,
G(n; [n?/ 4] + k) always contains a K([¢logn],[¢,logn]) and k further edges.

We suppress the proof of Theorem 5. Put r, = [¢;logn]. For k > 1the structure
of our G(2r;; r; + k) is of course not uniquely determined. Perhaps the following
result holds: Let n = 8. Then every G(n; [n?/4] + n — 1) contains a K([clogn],
[clogn]) and two edges which have no vertex in common and all four vertices of
which have the same color. It is easy to see that a G(n;[n*/4] + n — 2) does not
have to have this property. To see this consider a K([n/2], [(n+1)/2])
where further one vertex of each color is adjacent to all the vertices of our graph
i.e., the vertices of our G(n; [n?/4]+n—2) are Xy, ==, X5 Vo s Wi
k=1[n/2], I=[(n+1)/2] and its edges are

(oy)ilsisk 15jsTand (x,x)(yy);2sis b 25j= 1
Put
- p_z_ e . | r - — < p s —

Turén proved that every G(n: m(n,p)) containsa K(p)and Diracand 1[2] observed
(independently) that it contains a K(p + 1) from which one edge is missing . By
very much more complicated methods I can prove that for n > ny(p, k) G(n; m(n, p))
contains a p chromatic subgraph K(k,:-:,k) and one further edge (i.e., a
K (k,---,k)); for p=2 this is a weakened form of Theorem 1.

Now we prove Theorem 1. First we need two Lemmas.

Lemma 1. Every G(n; m) contains a subgraph G{N,M) every vertex of
which has valency greater than [m/n]. Further

m

0 Mz m—(n—N) H

n
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(The Lemma of course means that every vertex of G(N, M) has valency in
G(N,M) greater than [m/n]).

If every vertex of G(n,m) has valency > [n/m], there is nothing to prove.
Hence we can assume that G(n,m) has a vertex x,; of valency <[m/n]. If
G(n; m) — x, has a vertex x, with v(x,) £ [m/n] we consider G(n; m) — x; —x,.
We repeat this process and obtain a sequence of vertices x,,---,x, so that the

valency of x; in (G(n;m) —x; — - —x;_;)is S[m/n] forevery 1 i<k —1,
but every vertex of
(2) (G(n; m) — x; — -+ = x;) = G(N; M)

has valency > [m/n].

Clearly M > 0 for otherwise, since (G{n;m)— x, — -+ ~x,_,) has only one
vertex and thus no edges, we can put in (2) kK = n — 1 and by our construction
we would have

m

m=<n-1) [—] <m

n

an evident contradiction. Further by our construction (k = n — N)
M=m—(n—-N) [-’;1]

which proves (1), and the proof of Lemma 1 is complete.

LemmA 2. Let m>[n?/4]. Then every G(n; m) contains a K,2,k) where
k = [esn).

Lemma 2 is known [6].

Now we can prove Theorem 1. In fact we shall prove the stronger statement:

To every & > 0 there is a ¢, = ¢,(2) so that every G(n;[n?/4] + 1) contains a
K ([cogn], [n" ™.

By Lemma 1 our G(n;[n?/4] + 1) contains a subgraph G(N, M) every vertex of

2

which has valency > [Ln_ﬁ;[i—_l_] =[n/4]. Further (1) implies by a simple
computation ?

n? n N?

Further since every vertex of G(N,M) has valency > [n/4] we have

n
(3) N > T
By (2) Lemma 2 can be applied to G(N., M) and by Lemma 2 and (3) we obtain
that G(N, M) contains a K (2,k) with k=[e¢sn/4]. Let the vertices of our K,(2,k)
be (we choose ¢s <1/3)
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Csh n
e ke [5] < [4] -1

Denote by z, *--, z, the other vertices of G(IN, M). Each y has by Lemma 1 valency
> [n/4] (in G(N, M)), hence each y;,1 =i < k is connected with more than

n n
(5) e

z’s. ((5) follows immediately from (4) since the number of x’s and y'sis k +2 <
[#/8] + 1 and in the worst case y; is connected with all of them).

Let {7, 1 <j <1, 1,> n/8, be the z's adjacent to y,. Form all the (4, —2)-tuples
(4, = [¢; logn] of Theorem 1) of these vertices for each i,1 i< k = [csn/4].

By a simple computation we obtain (we use (Z) > (a/ b)®)

©) % f

* n
i=1 (“n_ 2)

Further trivially

v

csn [:n/8]+1)>c5n n )""'2
T (22 )% (s

(7) n ) - nu,.—z - nu,‘-Zeu,,—Z - In )un-.'!
u, —2 (u,—2)! (U, —2yn—2 (u,,— 2
Hence from (6) and (7)
& 1 esn n 1 =g [ B
® i§1 (un_z) ~ 4 (u,,—Z) 24un=2 > (“n_z)

for every € >0 if ¢; = ¢,(g) is sufficiently small. The number of the z’sis clearly
less than n, hence the number of the (u, — 2)-tuples formed from z's is less than

(u ri 2). Thus from (8) there is a (u, — 2)-tuple which occurs more than
n'~% times —in other words there is a set of u, — 2 z’s which are adjacent to the
same [n' 7¢] y’s. If we adjoin to these z’s x, and x, (which are adjacent and are
adjacent to all y’s) we obtain that G(N; M) and hence our G(n;[n*/4] + 1)
contains a K (u,,n' ™) for every ¢>0 if ¢, = ¢,(e) is sufficiently small. This
completes the proof of our assertion and hence Theorem 11is proved.

Proof of Theorem 2. As in the proof of Theorem 1 our G(n;[n?/4] + 1)
contains a K/2,[csn/4]), ¢s <11/3, having the vertices X;,X,, ¥y, s Vi,
k = [csn/4]. Each of the k vertices y,,---, y; are adjacent to more than n/8
z’s (we use the notations of Theorem 1). Consider now the bipartite graph whose
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vertices are yy,-++, ¥ii Z1,**, 2, and whose edges are the edges (y;,z;) of G(n; m).
This bipartite graph has fewer than »n vertices and more than

(]
edges. Hence by a theorem of Gallai and myself [7] it has a path of length c,n
(the length of a path is the number of its edges). Since our graph is bipartite every
second of its vertices is a y. Now since x, and x, are adjacent and they are adjacent
to each of the y’s we immediately obtain that our G(n;[n?/4] + 1) contains a
C, for each 3 = k < [¢,n], which proves Theorem 2.

Proof of Theorem 3. By Lemma 1 G(n; [tn*/*]) contains a subgraph G(N: M)
every vertex of which has valency = [n'/*]. Let x be one such vertex and let
Yir o5 Ve k=3[tn""*] be some of the vertices adjacent to x and denote by
zy,--- the other vertices of G(N,M). Every y has valency = [tn'/?], thus
since the number of y’s is 3[tn'/*] there are at least 1 [tn'/*] z’s adjacent
to each y. Hence the bipartite graph whose vertices are y,,---, ¥,: z,, --- and whose
edges are the edges (y;,z;) of G(n,m) has at least

k 1[tn1?] = [n'/?]* > I;—n

edges. The number of its vertices is clearly < n. Thus by the theorem of Gallai
and myself [7] it has a path of length > 2¢; t* and as in the proof of Theorem 2
every second vertex of this graph is a y. Since x is adjacent to every y this path
together with the vertex x gives the required circuits C,;, 2 <1 < ¢;3i2, which
proves Theorem 3.
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