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I dedicate this little note to Professor Waclaw Sierpinski since I

use in it methods which he used very successfully on so many oceasions.

Throughout this paper a,f,y,... will denote ordinal numbers,

Mg, M, ... integers, r,, ... rational numbers, 7, , ... non-negative rationals

and @, a,, b, ... real numbers. H will denote a Hamel basis of the real

numbers, H* the set of all numbers of the form >n.a, (a,¢H) (the sum
a

is finite) and H* the set of all numbers of the form }'r}a, (a,<H).

Measure will always be the Lebesgue measure, and (e, b) will denote
the set of numbers a <<z << b.

Sierpinski showed [1] that there are Hamel bases of measure 0 and
also Hamel bases which are not measurable.

We are going to prove the following theorems:

THEOREM 1. H* is always non-measurable. In fact H* has inner
measure 0 and for every (a,b) the outer measure of H*~(a, b) is b—a.

TuroreM 2. Assume ¢ = N,. Then there is an H for which H+ has
measure 0.

Proof of Theorem 1. The sets H*+1/n, 2 << n < oo, are pair-
wise disjoint. Thus a simple argument shows that H* has inner measure 0.

For every x there exists an n, so that n,-« is in H*, or the sets 1 /nH*,
2 =i n << oo, cover the whole interval (—oco, +oco). Hence H* cannot have
outer measure 0, and thus by the Lebesgue density theorem it has a point,
say @y, of outer density 1. But then (since H* is an additive group) every
point of x,+H" is a point of outer density 1 of H*. Finally, it is easy to
see that H* is everywhere dense (since, if @ and b are rationally indepen-
dent, the numbers n,a-+n,b are everywhere dense).

Now it is easy to deduce that the outer measure of H*~(a, b) is b—a.
To see this observe that since H* has outer density 1 at z,, for every
¢ > 0 there exist arbitrarily small values of #, such that the outer mea-
sure of H*~(xy— 7, x,+n) is greater than 2(1—e¢)z; but consequently
the same holds for H™~(xy+1t— 9, xy+1+ ), where t is an arbitrary
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element of H*. Since H* is everywhere dense, a simple argument shows
that the outer measure of H*~(a, b) is greater than (1—e)(b—a)— 3.
Since this holds for every e and #, the outer measure is b — a, which com-
pletes the proof of Theorem 1.

Now we prove Theorem 2. In fact we shall prove a somewhat stron-
ger theorem:

TUEOREM 2'. Assume ¢ = N,. Then there is an H such that H+ is
a Lusin set (see [2], p.36-37), 4. e. il intersects every nowhere dense
perfeciset in a set of power < N,.

It is well known (and easy to see) that such a set has the property
that if &, 1 < k << oo, is any sequence of numbers, it can be covered by
intervals I, of length g (1 <k < oo) (see [3] and also [2], p. 37-39).

We shall construct our H by transfinite induction. Let {F,}, 1 <
< a < 2,, be the set of all nowhere dense perfect sets (as is well known,
there are ¢ = N, perfect sets) and let @,, 1 < a < £2,, be a well-ordering
of the set of all real numbers. Put

PO = | F,
lsy<a
F ig a get of the first category and for a >y we have F(*) 5 F®,

We shall denote by {a.}, 1 < a < 2,, the elements of H. Assume
that for « < g the a; have already been constructed. We choose a, and
ag., as follows: Let x; be the z, of smallest index which is not of the
form }'7, @, o; < f. Put
(1) Ty = U—10,
where % and » have the following properties:

L. {u,v,a., 1 <a<f, are rationally independent.

II. The numbers

(2) U1, v Z‘ ToGay @ < f,
7

are never in #, unless r, = —r, # 0.

Then put a; = v and @y, = %. First we show that such values u
and v exist.

Put # = v+ a,;. Then II is equivalent to the relation

(ry+re)o 41105+ X 10 a0) ¢ FP
T
for every choice of r,47, % 0 and arbitrary r,, @, a; < p. Thus o i8

in none of the sets
(3) (F{ﬁ) == Z Irﬂ-{ a'ﬂ.: — ¥ wrﬁ) J'II{'TI + ?.2) .

Clearly all sets (3) are sets of the first category and there are only X,
of them. Thus their union is also of the first category and hence there
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exists a set of ©’s of second category which is not contained in their union
and which thus satisfies II. It is easy to see that there exists at most a
countable number of choices of v and # = »-+2; which do not satisfy
I; hence there exist w and » satisfying both I and TI.

This construetion can clearly be carried out for all ordinal numbers
g << £,, and, since ¢ = ¥,, it gives a Hamel-base H. Clearly H+ is a
Lusin-set. To see this it is sufficient to show that H+~F has for every

i
@ << 0, a power not exceeding X,. Let Y7 a:, (& < ... < &) be an ele-

i=1
ment of . Since ¢ = 8,;, there are only denumerably many elements
:
of H+ with & < a. If & > «, then by our construction Zfr_;; az; is not in
t i=1
F since, by IT, if & > «, then Yre a., can bein F only if & +1 =
io1
= §and r;, | = —7y, but it is then not in H*. This completes the proof
of Theorem II.
We have really proved the following stronger statement:

There exists a Hamel-base H with a well-ordering {a,. such that the
i

set of real numbers N
1

2 P @y for which
=1

1 £ owp—1 or Fartfa ; =Terte a e ]
is a Lusin set.

Kuezma asked in [4] the following question: Let f(X+Y) = f(X)+
-+ f(Y) and assume that f(Z) < ¢ for every Z P, where P is such a set that
every real number can be written in the form Z,—Z,, 7., Z,eP. Does
it follow then that f(X) = ¢X'? The answer is negative. To see this let
fla,) < 0 for every a,eH, let f(a,) be non-linear and let us extend f(X)
for every real X by f(u-+-v) = f(u)+f(v). Clearly f(Z) < 0 for every
ZeH+, every real number is of the form Z,—Z,, Z,, Z,eH*, and f(X) =
= eX,
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