TO WACŁAW SIERPIŃSKI ON HIS 80-TH BIRTHDAY

ON SOME PROPERTIES OF HAMEL BASES

BY

P. ERDÖS (BUDAPEST)

I dedicate this little note to Professor Wacław Sierpiński since I use in it methods which he used very successfully on so many occasions.

Throughout this paper a, β, γ, \ldots will denote ordinal numbers, n_i, n_a, \ldots integers, r_a, \ldots rational numbers, r_a^+, \ldots non-negative rationals and a, a_a, b, \ldots real numbers. H will denote a Hamel basis of the real numbers, H^* the set of all numbers of the form $\sum_a n_a a_a$ $(a_a \in H)$ (the sum is finite) and H^+ the set of all numbers of the form $\sum_a r_a^+ a_a$ $(a_a \in H)$. Measure will always be the Lebesgue measure, and (a, b) will denote the set of numbers a < x < b.

Sierpiński showed [1] that there are Hamel bases of measure 0 and also Hamel bases which are not measurable.

We are going to prove the following theorems:

Theorem 1. H^* is always non-measurable. In fact H^* has inner measure 0 and for every (a, b) the outer measure of $H^* \cap (a, b)$ is b-a.

Theorem 2. Assume $c = \aleph_1$. Then there is an H for which H^+ has measure 0.

Proof of Theorem 1. The sets H^*+1/n , $2 \le n < \infty$, are pairwise disjoint. Thus a simple argument shows that H^* has inner measure 0.

For every x there exists an n_x so that $n_x \cdot x$ is in H^* , or the sets $1/nH^*$, $2 \le n < \infty$, cover the whole interval $(-\infty, +\infty)$. Hence H^* cannot have outer measure 0, and thus by the Lebesgue density theorem it has a point, say x_0 , of outer density 1. But then (since H^* is an additive group) every point of $x_0 + H^*$ is a point of outer density 1 of H^* . Finally, it is easy to see that H^* is everywhere dense (since, if a and b are rationally independent, the numbers $n_1a + n_2b$ are everywhere dense).

Now it is easy to deduce that the outer measure of $H^* \cap (a, b)$ is b-a. To see this observe that since H^* has outer density 1 at x_0 , for every $\varepsilon > 0$ there exist arbitrarily small values of η , such that the outer measure of $H^* \cap (x_0 - \eta, x_0 + \eta)$ is greater than $2(1-\varepsilon)\eta$; but consequently the same holds for $H^* \cap (x_0 + t - \eta, x_0 + t + \eta)$, where t is an arbitrary

element of H^* . Since H^* is everywhere dense, a simple argument shows that the outer measure of $H^* \cap (a, b)$ is greater than $(1-\varepsilon)(b-a)-3\eta$. Since this holds for every ε and η , the outer measure is b-a, which completes the proof of Theorem 1.

Now we prove Theorem 2. In fact we shall prove a somewhat stronger theorem:

THEOREM 2'. Assume $c = \aleph_1$. Then there is an H such that H^+ is a Lusin set (see [2], p.36-37), i. e. it intersects every nowhere dense perfectset in a set of power $\leq \aleph_0$.

It is well known (and easy to see) that such a set has the property that if ε_k , $1 \leq k < \infty$, is any sequence of numbers, it can be covered by intervals I_k of length ε_k ($1 \leq k < \infty$) (see [3] and also [2], p. 37-39).

We shall construct our H by transfinite induction. Let $\{F_a\}$, $1 \le a < \Omega_1$, be the set of all nowhere dense perfect sets (as is well known, there are $c = \aleph_1$ perfect sets) and let x_a , $1 \le a < \Omega_1$, be a well-ordering of the set of all real numbers. Put

$$F^{(a)} = igcup_{1 \leqslant \gamma < a} F_{\gamma}.$$

 $F^{(a)}$ is a set of the first category and for $\alpha > \gamma$ we have $F^{(a)} \supset F^{(\gamma)}$.

We shall denote by $\{a_a\}$, $1 \leqslant a < \Omega_1$, the elements of H. Assume that for $a < \beta$ the a_{β} have already been constructed. We choose a_{β} and $a_{\beta+1}$ as follows: Let x_{δ} be the x_a of smallest index which is not of the form $\sum r_{a_i}a_{a_i}$, $a_i < \beta$. Put

$$(1) x_{\delta} = u - v,$$

where u and v have the following properties:

I. $\{u, v, a_a\}, 1 \leq a < \beta$, are rationally independent.

II. The numbers

(2)
$$r_1 u + r_2 v + \sum_i r_{a_i} a_{a_i}, \quad a_i < \beta,$$

are never in $F^{(\beta)}$, unless $r_1 = -r_2 \neq 0$.

Then put $a_{\beta} = v$ and $a_{\beta+1} = u$. First we show that such values u and v exist.

Put $u = v + x_{\delta}$. Then II is equivalent to the relation

$$((r_1 + r_2)v + r_1x_{\delta} + \sum_i r_{a_i}a_{a_i}) \notin F^{(\beta)}$$

for every choice of $r_1+r_2\neq 0$ and arbitrary $r_{a_i},\,a_{a_i},\,a_i<\beta$. Thus v is in none of the sets

(3)
$$(F^{(\beta)} - \sum_{i} r_{a_i} a_{a_i} - r_1 x_{\delta}) / (r_1 + r_2).$$

Clearly all sets (3) are sets of the first category and there are only \aleph_0 of them. Thus their union is also of the first category and hence there

exists a set of v's of second category which is not contained in their union and which thus satisfies II. It is easy to see that there exists at most a countable number of choices of v and $u = v + x_{\delta}$ which do not satisfy I; hence there exist u and v satisfying both I and II.

This construction can clearly be carried out for all ordinal numbers $\beta < \Omega_1$, and, since $c = \aleph_1$, it gives a Hamel-base H. Clearly H^+ is a Lusin-set. To see this it is sufficient to show that $H^+ \cap F^{(a)}$ has for every $a < \Omega_1$ a power not exceeding \aleph_0 . Let $\sum_{i=1}^t r_{\xi_i}^+ a_{\xi_i}$ ($\xi_1 < \ldots < \xi_t$) be an element of H^+ . Since $c = \aleph_1$, there are only denumerably many elements of H^+ with $\xi_t \leqslant a$. If $\xi_t > a$, then by our construction $\sum_{i=1}^t r_{\xi_i}^+ a_{\xi_i}$ is not in $F^{(a)}$ since, by Π , if $\xi_t > a$, then $\sum_{i=1}^t r_{\xi_i} a_{\xi_i}$ can be in $F^{(a)}$ only if $\xi_{t-1} + 1 = \xi_t$ and $r_{\xi_{t-1}} = -r_{\xi_t}$, but it is then not in H^+ . This completes the proof of Theorem Π .

We have really proved the following stronger statement:

There exists a Hamel-base H with a well-ordering $\{a_a\}$ such that the set of real numbers $\sum_{i=1}^{t} r_{a_i} a_{a_i}$ for which

$$a_{t-1} \neq a_t - 1$$
 or $r_{a_t} + r_{a_{t-1}} = r_{a_t} + r_{a_{t-1}} \neq 0$

is a Lusin set.

Kuczma asked in [4] the following question: Let f(X+Y)=f(X)+f(Y) and assume that f(Z)< c for every $Z \in P$, where P is such a set that every real number can be written in the form $Z_1-Z_2, Z_1, Z_2 \in P$. Does it follow then that f(X)=cX? The answer is negative. To see this let $f(a_a) \leq 0$ for every $a_a \in H$, let $f(a_a)$ be non-linear and let us extend f(X) for every real X by f(u+v)=f(u)+f(v). Clearly $f(Z) \leq 0$ for every $Z \in H^+$, every real number is of the form $Z_1-Z_2, Z_1, Z_2 \in H^+$, and $f(X) \neq cX$.

REFERENCES

- [1] W. Sierpiński, Sur les distances des points dans les ensembles de mesure positive, Fundamenta Mathematicae 1 (1920), p. 93-104.
- [2] Hypothèse du continu, Monografie Matematyczne 4, Warszawa-Lwów 1934.
- [3] Sur un ensemble non dénombrable, dont toute image continue est de mesure nulle, Fundamenta Mathematicae 11 (1928), p. 302-304.
- [4] M. Kuczma, On the functional equation f(x+y) = f(x)+f(y), ibidem 50 (1962), p. 387-391.

Reçu par la Rédaction le 20, 6, 1962