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1. If A, 4,,... are Lebesgue-mensurable sets of real numbers in
the interval I = [0,1] with meagures satisfying

pldy) > >0, r=1,2,...,
the set

N U4,

wz=l rz=n

is measurable with measure at least . So it is certainly possible to choose
r=oo

a sequence n; < my < ... such that the intersection (M4, is non-empty.

r=1
But (see the example in §2) there may be no such sequence for which
the infersection has positive measure. However, we show that the sub-
sequence can be chosen to ensure that the inftersection iz uncountable.
More precisely, we prove (see §§3 and 4)

THEOREM 1. Suppose »n is « positive nwmber and Ay, 4,, ... are
Lebesgue-measurable subsets of the interval [0, 1] with lim supp(A4,) = 5.
Then there is a Borel set N with u(S) = 9, and o sequenece ¢, << q, << ...
such that every point of S is a poini of eondensation of the set

U M 4,

izl r=i
so that every open set containing points of S also contains a perfect subset
of A Ay, ... for some j. .
We arrange our proof so that it can be trivially generalized (see § 5).
It is natural to ask if, under the conditions of Theorem 1. one can
say anything about Hausdorff measures of the sef

n AQ;

izl
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for suitably chosen sequences ¢, ¢,, ... As far as we can see, it may be
that, for every strictly increasing continuous function ¢(¢) with ¢(0) = 0,
there is a sequence of sets A, 4,, ... satisfying the conditions of Theo-
rem 1 and such that, ¢-m denoting the Hausdorff measure generated
by ¢, we have
q--m(ﬂ AQ}’ =N
izl

for every sequence ¢, ¢,, ... But, on the other hand, it may be that, for
every such ¢ (provided that ¢-m(I) = oo) and every sequence of sets
satisfying the conditions of Theorem 1, there will be a sequence q,, ¢,, ...
such that

g-m (N 4g) = oo.
i>1

Perhaps it is most likely that the truth lies between these two extre-
mes and depends in some way on the value of the parameter 5 between
0 and 1 (P 442) (7).

2. Before proving the theorem, we discuss a special example. Let
K, denote the set of all numbers of the form

@ 8 e B o ha T

with a, = 0 and @, = 0 or 1 for all other values of n. Clearly u(K,) = 3
and the intersection of any N sets K, has measure 2V, Hence the inter-
section of any infinite subsequence of the sets has measure zero, and so
has the set

U MK, for any sequence ¢ < ¢, < ...

izl r=j

In this instance we may verify the theorem by taking ¢, = 2r and

§ = [0,1], since an open subset of [0, 1] contains, for some suitable
integers j and m, the perfect set of all numbers of the form

oo
L R ’/\“’br_ g-(2r=1)
rej
r=nc
where &, = 0 or 1 for r = j. and this perfect set is contained in (M) K,,.
The set i
U M Ky
i=l or=j

o0
is the set of numbers of the form Yea,- 27" with a, =0 or 1 for all r,

S |

and a,. = 0 for all sufficiently large .

(*) Added in proof. The second extreme turned out to hold true;see P. Erdés
and 8. J. Taylor, The Hausdor(f measure of the intersection of sels of positive
Leberque measure, Mathematika 10 (1963), p. 1-9,
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3. It will be convenient to introduce the following conventions:
(a) 7, with or without a suffix, will denote an infinite set of posi-
tive integers;

(b) if B,, E,,... are sets, then A {E,} will denote (M) E,;
ned”

(¢)if A and B are subsets of I, we say that A avoids Bif u(A~B) =0.

We prove

LEmyA 1. Suppose that E,, E,, ... are measurable subsets of I =
= [0, 1] with lim infu(H,) = 4 > 0. Then there is a Borel subset D of 1
with u(D) = n, and a set A", such thal every Borel subset of D which has
positive measure avoids only a finite number of E, with n in 4.

Proof. Suppose the lemma is false, This implies that
(1) if A is any Borel subset of I with u(A4) = », and 4 is any infinite

set of positive integers, then A contains a Borel set with positive

measure which avoids E, for infinitely many » in 4.

Applying (1) with 4 = I, we see that I contains a Borel set 7, with
#(T) >0, which avoids E, for infinitely many n. Take 7', to be such
a set 7', chosen from among the possible sets 7' so that all the other pos-
sible sets 7' have measure less than 2u(7,). Let 47, be the set of n such
that E, avoids T,. Suppose that, for some % = 1, disjoint Borel subsets
T,Ty, ..., T} of I, and sets A, oA, o ... DA, have been chosen so
that T\ v T, ...v T} avoids E, for all » in A#7. Then I—(T,v...wT})
contains almost all points of some sets E, with » arbitrarily large, and
so its measure is at least . We apply (1) with A = I— (T, v T,v...wT})
and A" = A7, and choose a Borel set T, contained in T and disjoint
from Ty, T, ..., T, and a subset A7, of A7, such that T, , avoids %,
for all # in A, but all Borel sets 7 contained in I and disjoint from
T, 1,,..., Ty, which avoid K, for infinitely many » in .47, have measure
less than 2u(T;. ). Then T, v Ty v ... v T v Ty avoids B, for all # in 47, ;.
Since the conditions are satisfied when k& =1, we may suppose that
T,,T,,... and A"y, A%, ... have been chosen inductively in this way. -

Since

WI—(Tyo Ty ... o Ty) > 9,
for all k, we have
plI—(TywTv..) = 9.

So we may apply (1) with A =I1— (T, v T,v ...) and A4 = A,
defined to be the set n,, n,, ..., where =, is the least integer in A", n,
is the least in .4, which exceeds n,, and so on. There will be a Borel set
F contained in A, with u(F) > 0, which aveids Z, for infinitely many
n in 4. Now, if we choose any positive integer %, all but a finite number
of integers in A7, are in 47, and so ¥ avoids H, for infinitely many n
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in A, and at the same time F c I— (T, v T, v ... v T}). Hence u(F) <
< 2u(T%.,). Since T, T',, ... are disjoint Borel subsets of I, and u(l) =1,
it follows that w(7}.,) -0 as k — oo, and this contradicts u(F) > 0.

4. Proof of Theorem 1. Since lim supu(A4,) = 5, and we are concer-
ned with the existence of a subsequence with a certain property, we may
without loss of generality suppose that liminfu(4,) = 5. For each r
we may choose K,, a closed subset of 4,, with

p(Hy) 2 p(d)—(1fr).

Then lim infu(K,) = n. So, by the lemma, there is a Borel set D
with u(D) = # and a set 4 such that every Borel subset of ) with posi-
tive measure avoids K, for only a finite number of # in 4. Let 1,, 1,, ...
be a countable base for the open subsets of I'; for example, take I,, I,, ...
to be an enumeration of the open subintervals of I with rational end-
-points. Take

N = D—U!Iﬂ

the union being taken over all » for (D~ I,) = 0. Then § iz a Borel
set with
p(8) = p(@-— Y p(DAL)=uD) =y,
p(Lr~ Tl =0

and every open set which meets § does so in a set of positive measure.

Now let G be an open set with G~ 8§ 5 0. Then u(G~8) >0, and
G~ 8 avoids K, for at most a finite number of » in 4", Also, as u(G~8) >0,
we can choose two disjoint closed subsets H, and H, of ¢, each intersec-
ting § in a set of positive measure (see § 5). Then H,~ 8 avoids K, for at
most a finite number of # in A", for @ = 0 or 1. Thus we can choose »'
in A4 so that both

p(Hyn 8~ K, ) >0 and wp(H,~S~HK,)>0.
By repeating this argutaent, we gee that there exist four disjoint
closed sets, Hy, and Hy, in H,, end H,, and H; in H,;, and an integer
v?, larger than »,, in A" such that

1"“"(’8‘ S ‘H.ﬂﬁ N Kv] A Kv2) = 0

for all four cloged sets H,;, «. g = 0 or 1. It follows, by induction, that
for each integer k > 2 we can choose a system of 2% disjoint closed sets

(1) H

ayay...ap? Uyy (lay oany O = 0 or 1,

and an integer ;. in A7, so that v =>,._,,

Hglu2,_.ck c H Gy gy vy tp = 0 o 1,

ayaa Ayt
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and
w8~ H“l”'zv--“k ~ K"1 ~ K,z FTome e vl ) 220,

tor a,, ay, ..., ¢z = 0 or 1. For each infinite sequence a;, ay,... of 0’s
and 1’s, write

.Xk_ZH

~nK, ~ ffyzﬁ s S My

a)8y,..97%

for k = 1,2, ... Then the sets X,, X,, ... are cloged and non-empty and
they decreage. So their intersection contains at least one point. As the
sets (1) are disjoint, for each fixed %, it follows that disjoint sets (M) X,
correspond to distinet sequences a,, a,, ... If A4 is the set of the inte-
gers v, v, ..., the closed intersection

HEE) = K, ~K,~.

contains this uncountable system of disjoint non-empty subsets of &,
and therefore containg a perfect subset of G.

Let I,,1,.... be a countable base for the open sets of I, and let
Gy, Gy, ... be an enumeration of those sets of the base that meet §. By
the last paragraph, A4° contains a subset 47, such that A7, {K,} ~&, con-
tains a perfect set. Similarly 47, contains A7, such that 47, {K,} ~Gy con-
tains a perfect set. Continuing in this way, we obtain a decreasing sequence
Ny 2Ny 2 ... such that A{K,} ~G, contains a perfect subset for
r=1,2,... Take 4" to be the set ¢, ¢;, ..., where ¢, is the least in A4,
and g,., is the least in 47, _, which exceeds ¢,, for r =1, 2, ... Now the
sequence ¢, ¢, ... and the set 8 satisfy the conditions of the theorem. For,
if ¢ is any open set which meets S at a point, # say, there is a get I, of the
base with xel, and I, < ¢. So for some j we have I, = ;. Hence

G~ {qu.m Ay ..} G ~A{K)
and so contains a perfect set.

5. Theorem 2. Let X be a compact set. Suppose the topology in X has
a countable base. Let u be a Carvathéodory outer measure on X with the prop-
erties

(a) p(X) =1,

(b) (@) = 0 for each = in X,

(¢) Borel sets tn X are u-measwrable,

(d) of B is p-measurable and & = 0, then there is an open set G with

Bc@G and p(G) < pu(l)+e.

Suppose v is a positive nwmber and A,, A,, ... are y-measurable sub-
sets of X with im supu(4,) = n. Then there is a Borel set 8 in X with
u(8) = n, and a sequence q; < gy < ..., such that every point of S is a point
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of condensation of the set

U M 4,

i=l r=i

and every open set containing a point of S also contains a perfect subset
of AgynAg; ... for some j.

Proof. It is clear how nearly all the steps in the proof of Theorem 1
have to be modified to provide a proof of Theorem 2; the only difficulty
is in the choice of the disjoint closed subsets H, and H, and the subse-
quent choice of the subsets (1) for £ = 2,3, ... These choices are justi-
fied by the following lemma, which we prove by using one of the ideas
we have already used:

LeMMA. Under the conditions of Theorem 2, if A is a p-measurable
set with u(A) >0, we can choose two disjoint closed subsets H, and H,
of A with u(H,) >0, u(H;) >0.

Proof. As 4 is y-measurable and u(4) >0, we can choose a closed
set B contained in A with u(B) >0. Let X, X,,... be a countable
bage for the open sets of X. Take

¢ =B—-U'ZX,,
the union being taken over all the integers r for which u(B~X,) = 0.
Then C is closed and

n(€) = u(B)— D u(BAX,) =pu(B)>0.

lrl(]':j'ﬁX‘.)nD

Hence C contains at least one point, ¢ say. As u((¢)) =0, we can
choose an open set @ with ce and p(G) < u(C'). Choose r so that ceX’
and X, = G. Then, as ¢eX,, we have u(B~ X,) > 0, so that

p(CnG) =z u(Bn X,) >0.

Finally, take H; to be a closed subset of ¢ ~G with u(H,) >0, and
take H, = 0~ (X —@). Tt iz easy to verify that these sets satisfy our
requirements.
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