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1. Introduction . 4 will denote the space of all plane paths w, so that w is a short
way of denoting the curve z(t, (o) = {x(t, w), y(t, (o)} (0 < t < + oc) . We assume that
there is a probability measure ,u defined on a Borel field 9 of (measurable) subsets
of S2, so that the system (Q, 3~ 7_„u) forms a mathematical model for Brownian paths
in the plane . [For details of the definition of ,u, see for example (9) .] For

0< a< b<+ oo, w E S2,

let L(a, b ; (o) be the plane set of points z(t, (o) for a < t < b . Then with probability 1,
L(a, b ; w) is a continuous curve in the plane . The object of the present note is to
consider the measure of this point set L(a, b ; (o) .

The first step in this direction is due to Levy (7) who proved that, with probability 1,
the Lebesgue plane measure of L(0, oo; (o) is zero . In (9), one of us considered the
fractional dimension measure, that is the measure with respect to the function
x8 (0 < s < 2) . It was proved that, again with probability 1, the measure with respect
to each xs (0 < s < 2), is infinite: that is, the path has dimension 2 in the sense of
Besicovitch . In (8), Levy improved his zero Lebesgue measure result by proving that
the measure of L(0, 1 ; w) with respect to the function x 2 loglog 1/x is finite with prob-
ability 1 . In fact Levy proves this result for Brownian paths in n-dimensional
Euclidean space (n > 2), but states that he does not expect his result to be best possible
for paths in the plane . He conjectured that in the plane case the measure of L(0, 1 ; (0)

is finite with respect to the function x 2 log 1/x.
O(x) is called a measure function if there is a S > 0 such that O(x) is monotonic

increasing and continuous for 0 < x < S and lim O(x) = 0. For a set of points E in
a ,

0 +Euclidean space the Hausdorif measure of E with respect to O(x), first defined in (4),
is denoted by 0 -m(E) . Put

hx(x) = x2(log 1/x)x (a > 0) .

Then hx(x) is a measure function . In the present note we prove in § 3 that

hl -m[L(0, 1 ; w)] < +oo

	

(1)

with probability 1 (this establishes the conjecture of Lévy) . The essential idea of our
proof is to extend the results of Dvoretsky and Erdős (2) concerning random walks
in the plane to the case of Brownian paths . Thus we consider how many squares of
a covering mesh of squares side 1/n are entered by the path L(0, 1 ; w) .

To prove that h,(x) is the `right' measure function for L(0, 1 ; w) one should also
show that

h,-m[L(0, 1 ; (ú)] > 0

	

(2)
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with probability 1. Unfortunately, this turns out to be much more difficult to establish .
We have a semi-heuristic proof of (2) which becomes impossibly complicated when one
tries to make it rigorous . The essence of the difficulty is that one needs to show not
only that most coverings of L(0, 1 ; U)) are `not too small' with respect to h,(x) but that
it is impossible to find any covering which is arbitrarily small in the sense of h,-measure .

It is worth mentioning at this stage that, if (2) could be established as well as (1),
the law of zero or one would imply the existence of an absolute constant 5 > 0 such
that, with probability 1, for all 0 < a < b < +oc

h,-m[L(a,b ; o»] _ ~(b-a) .

Due to the connexion between Hausdorff measures and generalized capacities
[see (5)], it is possible to obtain a lower bound for the measure of L(a, b; c)) by con-
sidering the capacity of L(a, b; (o) with respect to a suitable generalized capacity
function . We push this method as far as possible and obtain, in § 4,

h.-m[L(0, 1 ; w)] = co for all a > 2,

	

(4)

with probability 1 . This is clearly a long way from the desired result (2), but there are
technical reasons why (4) is as much as one can hope to prove by using the method
of capacities . These are discussed in (io) .

2. Preliminary results . Suppose A,, = 11,,(0) is the lattice of points in the plane with
coordinates (q/n, r/n) where n is a positive integer and q, r are integers . If zo = (xo , yo)
is any point of the plane, A,,(z o ) will denote the set of points of the form (z-z o ) with
z e A. . Then the set A,,(zo ) defines a mesh of squares of side 1/n which have the points
in 11,,(z o ) as their vertices: for convenience we suppose that each of these squares is
closed on the left and open on the right . Son) (zo ) will denote the square of this mesh
which contains the origin O .

By the definition of (Q, 3 „a), the Brownian path starts from O with probability 1 .
Let

r
tr,n = n2 (n = 1, 2, . . . ; r = 0, 1, 2, . . . ),

Q,-, .M = z(tr,n , w) .

(3 )

( 5 )
(6)

We start by looking at the path L(0, 1 ; c)) only at the points t,,,,, and ask first how many
squares of the mesh defined by 11,,(0) are required to cover all the points Qr,n(w)
(0 < r S n 2 ) . In (2), Dvoretsky and Erdős obtained an asymptotic formula for the
number of points entered in n steps by a plane random walk on a lattice. We now make
some modifications in their method to fit the Brownian motion case .

Let y r, ,,(z o) denote the probability that none of the points Q,,n((O), Q2,00 ), . . .,
Qr-i,n(w) lie in the square S0 (z o)-that is, the probability that the path z(t, (0) does not
return to the `origin square' at any of the points t s,n (1 < s < r-1) . Put

/'1/n /'1/n
n2 O J o yr,n(z0) dxOdyo •

	

(7 )
If z„ e So'°) (0), we can think of yr , n (z o ) as the probability that a Brownian path starting
at zo will not be in the square S(n) (0) at any of the times t,, ,, (1 < s < r-1) . Thus, by
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(7), yr,n is the average value of Yr,n(zo), assuming a uniform distribution for z o . Now
the measure # in Q is not changed if one simultaneously alters the time scale and the
scale on the plane by multiplying t by a factor A 2 and x, y each by a factor A, when
A > 0. It follows that y,,,, is independent of n so we can write

Yr = Yr,1 = Yr,2 - • • • - Yr, n •

	

( 8 )

Our first object will be to obtain an asymptotic formula for yr .
It is clear that

1=Yo>~ Yl% . . .iyn>0 .

	

(9)

Let the probability density function for the position of the point Qr n(N) be ur,n (x, y)
this is given by

	

1

	

x2 _ 2
ur,n(x, y) _ -		 (10)

2?!tr n
exp

( - 2tr,ny
For any z o , if (x, y) E S('t )(z o) we have IxJ < l/n, Jyj 5 l/n, and it follows from (5)
and (10) that

	

2

	

2

27rr' ur,n(x,y) % 27( 1- r),

	

( 11 )

for r = 1, 2, . . . . Thus for any z o , if wr,n (z o) denotes the probability that Qr,n(w) lies in

k•
Yk,n(z0)+

	

'16r,n(z)Yk-r,n(z+zo)dz = 1 ;

	

(13)
r=1 Sp )(z.)

because if the path is at z E Son) (zo ) at time tr,n , the probability that it will not return
at any of the times i s n (r + 1 < s < k), is the same as the probability that a path starting
at 0 will not return to Son) ( z + z o) at any of the times ti ,,, (1 < i <, k - r) . Now yr, n (z)
is clearly periodic in x and y with period 1/n in x and l/n in y . It follows from (7) and
(8) that

	

1
7k-r,n(z+zo)dz = 2Yk-r •

	

( 14 )
S(e)(go )

	

n
0

Applying the lower bound in (11) gives
k

Yk•,n(z0)+2~rE r (1-r)Yk-r 1 •

	

(15)

Averaging over z o , and applying (9) leads to
k

Yk(2~ Y, r (1- r)
+

r-1
2~r

	

1
or

	

Yk S log k +
0
((log k) 2 '

	

( 16)

Using the upper bound of (11), we have for any zo ,

~k+ 1
Yk,n(z0)+ri 27 Yk-r, n i 1,

Só") (zo ), we have
(1- r) (12).

27rr % u'r,n(zo)

	

27rr

Now we can classify the paths according to the last of the points Qr, n (cv) (r = 0, 1, . . ., k)
which lie in the square Son ) (zo) . This gives
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so that, on averaging, if 1 5 kl 5 k 2 < k we have, by (9),

With

this gives

which with (16) shows that

P. ERDÓS AND S. J . TAYLOR

k, 1

	

k2

	

1

	

k

	

1
Yk+Yk-k E

	

+Yk-k E

	

+ E

	

1 .
1 r=1 27Tr

	

Z r=k,+, 27Tr r=k,+1 27Tr

k
k1 = [ 21 k], k2 =

Ik
- log k

27r

	

1
Yk % fog k + ((log k) 2 '

Yk, logk
+O

((log k)2) .

	

(18)

If zo , zo are any two points, subtracting (17) with zo replaced by zó from (15) and
simplifying yields

Yk,n(z0)-Yk,n(zo)	=~, r2 ( 1 +0( 1))log k r1

< log k
(1+o(1)) .

Since Y k is the average value of 7k,n (zo ) for all z o , it follows from (18) that, for sufficiently
large k, and any z o ,

2Yk <~ Yk,n(z0) 2Yk (19)

Now consider the fixed lattice A.(0). Each point of the plane is in precisely one of
the half-open squares of side l/n defined by 1\n(0) . The density distribution (10)
therefore defines a density distribution relative to the mesh . That is, if we are only
interested in the position of (x, y) relative to the square in which it lies, we obtain a
density distribution vr,n (x, y) at t = t r, ,, given by

vr,n(x,y) = 1

	

E

	

E exp

	

(x+s/n)2-(y+q/n)2
27Ttr,na=-104= - ~

	

(

	

2tr,n

	

)

for 0 < x < l/n, 0 ~<, y < 1/n with yr n(x, y) = 0 for other points (x, y) . A simple
computation shows that vr,n (x, y) defines a distribution which, for large integers r,
becomes very close to uniform in the square Son ) ( 0) . We only require that

vr,n(x, y) = n2Y r(x, y),

	

( 20)

where

	

Nx, y) = 1 +o(l1r) as r -> oo ;

for (x, y) in SO(") ( 0) .
Still considering the fixed lattice A,,(0), let Tk,n be the probability that Qk,n(N) lies

in a new square of side l/n : that is, that Qk,n ((J) lies in a square which contains none of
the points Qo,n ((,)), Ql,n,(GJ), Qk-1,n(cv) . Now a change of scale again shows that
7' k,n is independent of n, so we will denote it merely by Tk' We can think of z(tr,n , (0)
as the result of adding together r independent random vectors each distributed like
z(l /n 2 , (o) . Hence we can apply the argument on p. 354 of (2) to deduce that, if the
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distribution of Qk,n(w) relative to the square in which it lies were uniform, then we
would have T k = yk . However, the distribution is almost uniform so that, by (20),

Tk = Yk{ 1 + 0(1/k)} ;

27r

	

1
or

	

T k = logk og
+0

-( l k)2

	

(21)

on substituting (18) .
Now let Nn ( (o ) be the number of squares of the lattice A n(0) which are entered by at

least one of the points Qk,n ((o) (0 < k < n2 ) . It is clear that

n'
{Nn(w)J = ú Tk .

k=0
Substituting the estimate (21) gives

&{N" (w)} _
7rn2

+ O
(n2 log log n,

	

(22)n.

	

log n

	

l (log e) 2

By using the relation (19), the methods of (2) can be modified without difficulty to
estimate the variance ofNn(w) . This gives

2

	

1 -

	

n2 1og log n
{Nn(w)l - 0((log n) 3 ) .

	

( 23 )

The strong law forNn((o) does not follow immediately by the methods of (2), though
it can be proved by a more detailed investigation . We do not do this in the present
note as it is not required-the strong law for a subsequence is sufficient .

LEMMA 1 . If ns = 2 21 (s = 1, 2, . . .), then

,u{

	

L

	

(&)) log 2

	

}w : lim N

	

=1 = 1 .
S~ M

ns

	

7rn

Proof. Chebyshev's inequality applied to (22) and (23) gives

w : !Nn(())
7rn2

	

n2

	

O
log log n

~{

	

-	 > e	 =
log n

	

log n}

	

( log n ) .

It follows that, for any e > 0,

E,cc{w : «o)

	

urns

	

ns
Nn s - log

ns
> c log j

converges. An application of the Borel-Cantelli lemma is now sufficient to give the
required result .

We now need a lemma which shows that any square of the mesh defined by An(z0 )
which contains at least one point Q,. .,, (0 < r < n2 ), is likely to contain very many
of them .

LEMMA 2 . Suppose 0 < S < 2 ; for a given path w, let the number of the points z(t,. ,n , w)
with 1 < r < n 2 which lie in the square S(n ) ( z o ) be Yn (z 0 ; w) . Then, for any z,

h{w : Y,,(zo ; w) < (log n) 81 _ (loge)'-8+0(l of gel
.
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Proof. The point z(t o, ,,, (o) = 0 lies in S (,n) (z0 ) . Let 0 = ro < r l < r2 < . . . be the
sequence of integers, defined by the path w with probability 1, such that z(t r, ,,, (o)
lies in Son )(z 0 ) for r = rl , r 2 , . . . ; but not for r2_1 < r < ri (i = 1, 2, . . .) . Now it follows
from (10) that the distribution of the point z(tr, ,,, (o) in Son ) (zo), given that it lies in this
square, is very nearly uniform for large r ; in fact, it differs from the uniform distribu-
tion by a factor 0 where

		

1
I¢-ll < r .

Hence, since ri > i, for each positive integer k

{1-(1/i)}yk <,a{w : ri -ri_,>k} < {1+(1/i)}yk .

Put s = [(log n)s] . Then Yn(z 0 ; (o) < (log n)a if, and only if, rs > n2 . Now if Y„(zo ; (0) ` s,
then ri-ri_, > {n2/(log n)s} for at least one i (1 - i ~< s) ; so that

s n
,(c{(d : Y.(zo ; (o) <s} <

	

p (o : ri - ri_1>	
i=1

	

(log n)s
Using (24) and (18), this yields

u{cv :Y„(zo ;(0) ~ 8}
~~logn)1 s+0\loo

gnnj

	

(25)

In the other direction, notice that if there is one integer i 0 (1 < i0 < s) such that
ri,, - r ip_1 > n 2 while ri - ri_1 S n2 for i + i0 , 1 < i < s, then Yn(z0 ; w) < s . For different
integers i0 these events are mutually exclusive. Hence

s
,a{w : Y„(zo ; (o) < s} > E

	

rio- rio-1 > n2 but r i - ri_, ~< n 2 for 2 + 2 0 , 1 ~<, 2 ~< s} .

Since the inequality (24) was true for any zo , we have

P'{(') : Yn(z 0 ; (1)) < s} > ~0) yn~ 11 ~l - \ 1
+ l l yn 2~

io=1

	

i=i

	

/~
to ton

/

nl
(log n)1_s + 0 log

on using (18) . This, together with (25) clearly establishes the lemma .

LEMMA 3 . Let TS(n; (o) 0 < 8 < 2, be the number of squares of the mesh defined by
An(0) which contains at least one z(t r,n , (9), but less than (log n)s of the points z(tr,n , (o) for
0 < r - n 2 . Then

o'{T,(n ; (o)} _
7T 2 n 2 +

0
log log n

(log n)2-s

	

(n2
(log n) 2 )

Proof. Suppose A(r), 0 < r S n 2 , is the probability that (i) z(tr,n , O) lies in a square of
the mesh not containing any of the points z(t i n , (o) for 0 < i < r, and in addition
(ü) fewer than (log n)s of the points z(ti,n , (v), r < i S n2 lie in the same square as
z(tr,n,(o) . Clearly

	

ns
{Ta(n ; (o)} _ Z A(r) .

	

(26)
r=0

Now

	

A (r) > Tr inf ,(({(o : Yn(z0 ; w) < (log n)ő},
Zo E son) (0)

(24)
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since Y,,,(zo ; (o) < (log n) ,s has the same probability as the event that in the n 2 steps
z(t2,n , w) (r < i < r+n2 ), starting from zo = z(tr, ,z , (o) e Son) ( 0) there are less than (log n)s
returns to S(;)(0) . From Lemma 2 and (21) it follows that

b g
n -
	2

{T~(n ; (,))} > (jo )1-8+0

	

1l~logon

	

log n +0
(logn

)
,

so that {T~(n ; w)} >
(Ion

n2
+ 0 \n(log n)2 ) .

Let p(zo ) be the probability that in [n 2/(log n)2 ] steps there are fewer than (log n)8
returns to S(8(')(z,,) . The argument ofLemma 2shows that

log log n

	

(28)p(zo)

	

n
- (logn)i-s+ O

-
gn -~

.

	

(

2
If

	

0 < r < n 2 - [(log n)2 (= N, say)

it is clear that

	

A(r) < Tr sup p(z o ) .
2o E S(O) (0)

while for N < r < n 2 ,

	

A(r) < Tr-
Hence, by (28) and (26), we have

N

	

V '
(@{TS(n ; G1){ <

	

A (r) + , Tr
r=O

	

r=N

<
[+

0 log log n "= T
+ 0

n2
(log n)1-s

	

(log

	

) rZ

	

((logn) 3)

_ 7T2n2
+0

n 2 1og logn
( log n)2-S

	

(

	

l
-
(log n) 2

This, together with (27), establishes the lemma .

LEMMA 4. Let S' be a fixed square of side l/n whose distance from the origin is less than
pin where p < kÉ, k a positive integer; and suppose Fh(S') is the event that none of the points

Q,,n(w), 0 < r < k lies in the square S' . Then there is a read constant c i such that

< cl(l log k
1)

.

Proof . The result corresponding to this lemma was obtained for plane random walks
in (3) . Modifications to the methods of (3), similar to those used in the present paper in
obtaining the estimate (18) for y,,,, are sufficient to prove the lemma, so we will omit
the details .

We need to consider not only the points Q,• n(w) of the path L(0, 1 ; (0) but also the
points z(t, (o) for tr_i,n < t < tr,n (r = 1, 2, . . . ) . For this purpose we shall need estimates
for the largest variation jz(t, (o)-z(tr_, •n , w) for t,._ 1 • n < t < t r • n . The next two lemmas
give the results we need .

(27)
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LEMMA 5 . If p > 1, then there is a finite constant c., such that
2

/1(w :

	

sup

	

17 (T, w) -z(tr , w)I > ( p/n)f <
p

exp -p .
t,. n<T< tr+ i,n

This result is well known ; for example, it is an immediate deduction from Lemma
of (9) .

LEMMA 6. For a fixed path w in 12, there is probability 1 that

J(((
lim sup l sup -

n
----

	

sup

	

I z(T, w) - z(tr n, w)

	

= 1 .
n-*~ t0<r<nW V(2 log n) t,,-<7<4,,,n

This is the two-dimensional form of a result which is well known in one dimension
a proof of the one-dimensional case may be found in (6), p . 152 .

3. Covering the whole path L(0, 1 ; (o ) . The result of Lemma 1 shows how many
squares of side 1/n, of the mesh defined by A,,, are needed to cover the ns discrete
points Qr, ,%(w) (0 < r < MD . Our object now will be to show that the whole path
L(0, 1 ; (o) can be covered without increasing the number of squares needed by a factor
larger than one . We have seen already in Lemma 3 that most of the squares of side 1/n
which contain one of the points Q, ,n ((y) will contain a very large number . From this
we will deduce that the path is highly concentrated on the little squares entered ; that
is, that most of the squares which contain one of the points Q,,n ((y) are such that all
the squares of the mesh nearby also contain at least one of the points Q,,n(&)) . By this
means we can show that it is possible to expand each of the little squares containing
a point Qr n((d) by a suitable large factor, without increasing significantly the total
number of little squares of side 1/n which are included in the covering . The expansion
factor will be chosen large enough to ensure that all of L(tr,n , t,-,,, n ; (0) will be included
in the larger region about the square which contains Q,,,,((o) .

We need to consider three types of `bad' points, i .e. points which would spoil our
covering estimate .

(i) Those integers r for which there is a very large displacement between tr,n and

tr+l,n • When n is large, Lemma 6 gives an adequate upper bound to the size of the
`large' displacements . It is convenient to call the point Q,,n(w) bad in this sense if

sup

	

I Z(T, (0) - z(tr, (0) I > Pn ,

	

( 29)
tr, n<T<t, ..F,, n

	

n

where pn = log log n. The number of integers r (0 < r < n2 ), for which (29) is satisfied
will be denoted by B l(n, w) .

(ü) Those integers r such that Q,,n(w) lies in a square S of the mesh An(0) such that
S contains fewer than (log n)21 of the points Q,,n(w) . The number of integers r which
are bad in this sense will be denoted by B2(n, (o ) . In fact B 2(n, (o) = T (n, (o) as defined
in Lemma 3 .

(iii) Those points which are not bad in sense (ü) but, nevertheless, are such that
there is at least one square of the mesh whose distance from S is less than 2 log log n/n,
but which contains none of the points Q,, ,, ((o) . The number of integers r which are bad
in this sense will be denoted by B3 (n, (o) .

4
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For any positive integer n, let Ln((y) denote the number of squares of the mesh
An(0) which contain at least one point of L(0, 1 ; &)) . Nn(d) was the number of squares
which contain at least one of the points Q, n((l) (0 < r < n2 ) . Let us now obtain RJ(o)
in the following way . If a little square S of side 1/n contains at least one of the points
Q, ,n ((d) (0 S r < n 2 ), then take all the squares of the mesh which are within
log log n/n of S. In addition, if S contains a point Q,,n(w) which is bad in sense (i),
take the squares of the mesh which are within (2/n) (logn)l of S . Rn ((I) is the total
number of squares obtained in this way . It follows from Lemma 6, that for sufficiently
large n, the set of squares obtained must cover all of L(0, 1 ; (o) . Hence for large enough n

N.(&)) < Ln((O) S Rn((O) •

	

(30)
Thus to obtain an estimate for Ln(6)) it is sufficient to show that

{Rn(0)JI {Nn(w)}

	

1

and use Lemma 1 . In obtaining an estimate for the measure of L(0, 1 ; (0) it is sufficient
to obtain arbitrarily fine coverings of bounded `extent' . Hence it will be sufficient
to show that, with probability 1, if n s = 2 21

R,,,((O)
_ 1 .

	

(31)
hW Njo))

We need estimates of the numbers A(n; (o) (i = l , 2, 3) of bad points . It follows
immediately from Lemma 5 that, - for large n,

9'{B,(n,o))} <
(logn)i0'

	

( 32 )

2
Hence

	

,~aBl (n, a)) > (, nogn.) < (log n)5 '

An application of the Borel-Cantelli lemma shows that there exists, with probability 1,
an integer ,3 1 such that

	

na
B,(n, w) <

	

	s for s > sl .

	

(33)
(log n,)

Lemma 3 already gives a good estimate for {B 2 (n, (o)} . This leads to

n2

	

c4
It (j) : B2(n, (,» >

(logn) < (log n)¢

for a suitable positive constant c4. Again the Borel-Cantelli lemma shows that there
exists, with probability 1 an integer 82 such that

ns
B 2 (ns , (o)

	

for s i s. .

	

(34)
(log nji

	

2

Suppose now S is a square of the mesh which contains at least (log n)l of the points
Q,,,,,((o) (0 < r < n) . Let qn(S) be the conditional probability that there exists another
square of the mesh within 2loglogn/n of S with none of the points Q,,n ( (O ) in it. We
need first to estimate qn(S) . Suppose i, is the first integer r for which Q,, n(w) lies in S .

t Much more than this is true, but (32) is sufficient for our present purposes .



218

	

P. ERDŐS AND iS . J . TAYLOR
Consider a fixed square S' within 2 log log n/n of S . By Lemma 4, the probability
pl that none of the points Qr,n (( 1) for

i o < r < is + (log n)4

lie in S' satisfies

	

< C5 logloglogng
pl

	

log log n

Let it be the first integer r > i o +(log n)f such that Qr,n(o) is in S again. Then the
probability of not entering S' for i t < r < it+ (log n)4- is again

log log log n
pz <

C5
log log n

Repeat the process, obtaining
2 1 <2 2 < . . . < it<n2 .

Since S contains at least (log n)1 points Q,,nM and there cannot be more than (log n)4
in any of the ranges (ik, ik+i) it follows that t > ( log n)1. Hence the probability that the
square S' contains no point Q r,n (()) satisfies

log log log nl (109 n)}
p < c5 log log n J

But there are not more than 15(loglogn) 2 squares of side 1/n which
2 log log n/n of S. Hence the required probability qn satisfies

qn(S) < 15(log log n)2 IC5 logollogolgog nlnog n>} .

This implies, afortiori for large n,

q,, (S) < exp ( - (log n)4) .

Since there are not more than n 2 squares, it follows immediately that

{B3(n, m)} < n2 exp ( -(log n)4) .

	

(35)

A further application of the Borel-Cantelli lemma shows that there exists with prob-
ability 1 an integers. such that

2
R3 (n,,, w) <

	

ns
2 for s ~ S3 .(log n,,

Finally, by Lemma 6, there exists with probability 1 an integer 84 such that

sup

	

(sup

	

I z(7, (0)-z(tr,n,

	

2 to
m)I) <	 g

n

	

(37)
0-<r-<n2 t". <r<t,

	

n
for all n > ns, .
Now, if P = max ( 8 1 , '3 2 , 83, s4 ), it is easy to deduce from (33), (34) and (36) that the

number of extra little squares we have included by our procedure satisfies

R ns (CO) - Nn,«0) < -
n2s

(log n s)e

are within

(36)

(38)
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for all s >, K. Further (37) ensures that the procedure includes sufficient little squares
to cover the whole path. Lemma 1 together with (38) establishes (31) which in turn
implies

LEMMA 7 . Let L,,(w) denote the number of squares of side, 1 /n of the mesh A,,(0) which
are entered by at least one paint of L(0, l ; (o) . Then, if n, = 2 2 '' ( s = 1, 2, . . .),

/
It (o : lim ' L,,S(w)

log
2
n,~

= 1 = 1 .
8-->- ~

	

7rns

We can immediately deduce

THEOREM l . If hi(x) = X 2 100, 1 /x, then there is probability l that

h,-m{L(0,1 ; w)} < 27r .

Proof. The diameter of a square of side 1/n, is V2/n, . For any e > 0, we have just
shown that for large s it is possible to cover L(0, l ; (o) with less than

2	 2
( to nS

squares of diameter	.
g ns

	

n,
This gives an h l -measure covering by arbitrarily small squares of extent less than
2(7r+e) . The theorem follows immediately since e is arbitrary .
Remark . It is clear that the constant in Theorem 1 is not best possible . If one covers

the path with a mesh of hexagons instead of the mesh of squares we have used it can
be proved that

h l-m{L(0, 1 ; (o)} 5
38

	 3 ,

however, even this result may not be best possible .

4. A lower bound for the measure . In proving that the hl -measure of L(0, 1 ; (0) is
finite we only had to show that it is possible to give a covering of the path of bounded
extent using figures of arbitrarily small diameter . However, if we are to succeed in
showing that the h l -measure is positive then we must show that no covering is possible
by a collection of convex sets of arbitrarily small total extent. This is much more
difficult . Besicovitch (1) showed that in order to prove positive measure it is sufficient
only to consider coverings by squares belonging to one of the meshes A"(0), n = 2k
(k = 1, 2, . . . ) . In fact for the particular measure function h,(x) it can be shown that it
is sufficient to consider coverings by squares which belong to one of the meshes A,,,
(s = 1, 2, . . . ) . [This follows from the fact that, in a certain sense, hl-measure differs
only slightly from Lebesgue measure .] However, one still must allow for the possibility
that the covering set may consist of squares of widely different sizes : it is this which
causes the difficulty . In § 2 we saw that the path was fairly thickly concentrated in
the regions which it enters . We would now need to prove that this concentration is
not `too thick', i .e. that not too large a proportion of the squares of the mesh side
1/n,, contained in a single square of side 1/n t are entered when k is much greater than t .
We have not succeeded in completing this proof rigorously .

For the remainder of this section let us push the technique of using generalized
capacity as far as possible and see what can be deduced . Suppose (D(r) is any con-
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tinuous function defined for r > 0 such that lim (D(x) _ +oo . For a closed set E in

the plane, consider the class of all measures v defined on E such that v(E) = 1 . We say
that the (D-capacity of F, denoted by C«>(E) is zero if

frfE (1) (1
x - yI) dv(x) dv(y)

fails to converge for all measures v ; on the other hand, if we can find a measure v such
that

we say that CID>(E) > 0 . -j-
h-measure and (D-capacity are connected by the following result due to Kematani (5) .

LEMMA 8 . If h(x) and (D(x) are respectively a measure function and capacity function
such that q)(x) = lfh(x) and E is'any closed set with h-m(E) finite, then C(D)(E) = 0 .

LEMMA 9 . For any k > 0, t > 0,

u{~ : I z(t, (J) I < k} =
t

r exp -
2t)

dr .
0

This is proved in (9) .

THEOREM 2 . If ha (x) = x2(log IIX)x, then there is probability l that

h.-m{L(0, 1 ; (o)} _ +oo
for every a > 2 .

Proof. As far as Hausdorff measure is concerned only covering sets of small diameter
are relevant. Hence if

~x(x)
_ Ihx (x)

	

(0 < x

	

?) l (a > 0),qr

	

~

	

( 40)
4(lob L ) x - "x (x i 2)

then h,,-m(E) _ Ox-m(E) for all E. Consider

_

	

dw

	

1 I exp { (r2/2í)}
d

	

i r xI (t)
f
u 0x(Iz(t,w)1)

	

t,~o r{log(l1t)Íx
r+ A'

tt

	

rexp{-(r2/2t)}dr,

using (20) and Lemma 9 . By making change of variable r = tax we obtain, provided
0<t< 116 ,

I(t)

	

t,f
t

¢{log(l~xt1)}xdx+~lxi t
~ xexp(-2x2)dx

0 x

_ 1 1

	

~-'

	

exp ( - áx2)J +~ +~

	

--

	

dx+ A .- ' exp (- 4t

	

t)
o

	

i

	

t-} x(log 1/xtl)x

=h+I2 +I3 +í,I exp(-4t), say .

f An actual numerical value for C«>(E) can be defined in terms of the infimum of the set of
values of the integral occurring in (39) . However, this is unimportant .

P. ERDÓS AND S. J . TAYLOR

fE
x

E
(D(Ix-yl)dv(x)dv(y) < +oo

	

(39)
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Now

		

11(t) = 1
r1

	

exp (- 2x2)	
dxt J o x{log (11x) + 2 log 1 /t}a

c s
< t(log l/t)1a'

for suitable c > 0 .

	

I (t) 1 t-}	 eXp( - 2x2)	dx6

	

2

	

tf 1 x{log (l/x) + 2 log 1 / t }a
1

	

Ol< t(log l~t)a
f

1 x exp (- 2x2 ) dx,

since in the range of integration, log l Ix + 2 log l f t > 111 log l It . Thus

I2(t) < t(log TOa

for suitable c > 0 .

	

13(t) =
t fit	 exp

( 2x2)- - dxt-1 x{log (1/x) + 1 log 1/tic,

< t 1 -1exp(-2x2)dx,t-
since in the range of integration log 1Ix + 1, log 1It > log 2 . Thus

I3(t) < c

for suitable cO > 0. We have obtained the estimate

I(t) < t(logclIt) a + t(log
C7

	

C

l/t)~+ j'+~la 1 exp ( - 4t)

	

(41)

which is valid for 0 < t < 116 . A simple computation shows that for t , 1?s there is a
finite constant c 1o such that

	

I(t) \ c1O

	

(42)

The estimates (41) and (42) show that, if a > 2

í
o lJ o J o ~a (Iz(t, )~ z(s, c~) )

By Fubini's theorem, (43) implies that, with probability 1,

)
dt~ ds < +oo .

	

(43)

1
f

1

	

1

J Ol 0Y a\~z(t,w)-z(s,w)r)dt~ds
< + oo .

	

(44)

But if E is the set L(0, 1 ; (o) and v is the measure on E obtained as the image of Lebesgue
measure on [0, 1], the paths (o which satisfy (44) must give sets L(0, 1 ; (0) which satisfy
(39) . Thus for any a > 2, there is probability 1 that

C ( O->{L(0, 1 ; (o)} > 0,
1

where

	

q,a(x)
_ 0a(x)'
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By Lemma 8 and (40), there is probability 1 that

h,,-m{L(0, 1 ; (o)} _ +oo .

	

(45)
Let a take successively the values

a,. =2+ 1- (r=1,2, . . .) .r
Then there is probability 1 that

h a-m{L(0, l ; tj))} _ + oo for a = aXP a2 , . . . .

This implies the result stated in the theorem .
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