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1. Introduction. In this paper we are going to generalize a problem
solved by MILLER in his paper [1] and prove several results concerning this
new problem and some related questions. We mention here that some of our
theorems (Theorems 8 and 10) have the interesting consequence that the
topological product of N, 1-compact spaces (Lindeldf spaces) is not necessarily
k-compact for any finite £

Der. (1.1) Let & be a family of sets. & is said by MILLER to possess
property B if there exists a set B such that

FnBs£0 for every Fegsr,
FY=8B for every Fed.

Der. (1.2) Let & be a family of sets. Let p°(¥) denote the least
cardinal number p for which F= p for every F¢&. If F=p for every F¢§,
we write ' = p. In what follows p(§F) = p denotes briefly that the family &
possesses the property _

r&)=p Fl=p

Der. (1.3) Let & be a family of sets and let ¢ =2, r =1 be cardinal
numbers. The family & is said to possess property C(g,r) if (| F<r for
every subfamily & of &, provided § = g. red

NoTE. If for a family & |§F = r and & possesses property C(2,r), then
& consists of almost disjoint sets.

The result of MILLER which is our starting point can be stated as follows:

(1.4) Let p be an infinite cardinal number, n an integer (n>0) and
let & be a family which possesses property C(p*,n) such that & = p.
Then the family & possesses property B.

! In our example the spaces will be discrete ones. The generalized continuum hypo-
thesis is used in the proof. As far as we know this result is new already for &A= 2. This
theorem should be compared with a theorem of J. Los [3] (see Section 7).

2 See [1], p. 35, Corollary.
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To show that this result is best-possible MILLER proves the following:

(1.5) There exists a family & (p(F)=N,, F =2%) which possesses
property C(2, N,) and fails to possess property B.’

However, one can ask what happens if & possesses property C(2, N,)
and |&F| is supposed to be greater than N,.

On the other hand, one can sharpen property B as follows:

DEF. (1.6) Let & be a family, s a cardinal number, s = 2. & is said
to possess property B(s) if there exists a set B such that FnB=0 and
FnB<s for every Fed.

Our problems will be of the following kind. Let & be a family of sets,
and let m,p,q,r,s be cardinal numbers such that §F =m, p(F)=p and
suppose that & possesses property C(g,r). Under what conditions for the
cardinals m,p,q,r,s has & to possess the properties B and B(s), respectively?

As the easy example (3. 3) will show, nothing can be said about pro-
perty B(s) if ¢>2. The case ¢=2 contains the essential difficulty in the
researches concerning the property B too.

The problem just stated is clearly a generalization of the problem treated
in (1. 4) which is a corollary of [1], Theorem 1. We remark that it would
be possible to generalize in a quite similar way the theorem itself not only
its corollary, however, such a generalization does not seem to need new ideas
and its formulation would be very complicated.

We restricted the formulation of the general problem with the assumption
p(§F)—=p instead of MILLER’s original assumption |&F|=p. This has no
importance in the problems concerning property B, however, in the problems
for property B(s) it seems to be an essential restriction (see the remark at
the end of Section 4).

2. Definitions. Notations. We use the usual notations of the set theory.
We are going to list only those where there is a danger of misunderstanding.
In what follows &, §,... will denote families (sets of sets); capital
letter will denote sets; x,y,... are the elements of the sets; m,f, p,q,r, s

denote cardinals; 4, f, &, [, n, . .. denote non-negative integers; «,g3,... denote
ordinal numbers. Union and intersection of sets will be denoted by U and N,
respectively.

t* denotes the least cardinal greater than ¢ (if ¢ is finite, {"=1¢+1).
t- is the immediate predecessor of the cardinal # if it exists, if not, then - —1.
(If ¢ is finite, -=¢—1 for £>0 and {~=0 for t=0.)

§(S) denotes the set of all subsets of S.

3 See [1], Theorem 3.
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If (x,)»—y is an arbitrary sequence of type ¢ of not necessarily different
elements x,, then {x,},., denotes the set of all x,’s forthcoming in the
sequence. This distinction will be sometimes omitted if there is no danger
of misunderstanding.

Let ¢(x) be an arbitrary property of the elements of a set H. The
set of all x € H which satisfy ¢(x) will be denoted by {x:¢(x)}. (We are
going to use the logical signs # (and), v (or) in the formulation of these
formulas.) B -

The sets {X: XSS/ X—=t}, {X: XSS X<t} will be denoted by
[ST, [S]”, respectively.

For an arbitrary family & the set U{?F is denoted by (§). Other special

regk
notations concerning families will be introduced later.

For the study of the problem stated in the introduction we introduce

the following symbols:

DEF. (2.1) M(m,p, q, r) — B indicates the statement that every family &
which possesses property C(g,r) possesses property B, provided p(F)=p
and F=m.

DEr. (2.2) M(in, p, r)— B(s) indicates the statement that every family &
which possesses property C(2,7) possesses property B(s), provided p(§F)=p
and §=m. M(m, p,q,r)—~B and M(m, p, r)—~B(s) denote the negations
of the corresponding statements, respectively.

To exclude trivial exceptions here we assume once for all m>0, p>0,
g>1,r>0,5>1.

We call briefly the symbols now introduced symbol-I and symbol-II,
respectively.

The proof of some of our theorems makes use of the generalized
continuum hypothesis or of the so-called measure hypothesis stated in [5].
These hypotheses will be cited as hypotheses (%), (#%) and the corresponding
theorems will be denoted by the same signs, respectively.

3. Preliminaries. A short summary of the content of the follow-
ing sections. We briefly say that one of the symbols is monotone increasing
(decreasing) in one of its variables, e. g. in m, if the fact that it is true for
m, p, q, r,(s) implies that it is true for m’,p,q,r,(s) for m=m (m' = m),
respectively. The following monotonicity properties are immediate conse-
quences of the definitions (2.1) and (2. 2):

(3.1) Both symbols are decreasing in m and r. Symbol-I is decreasing
in ¢. Symbol-1 is increasing in p, symbol-Il is increasing in s.
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We call attention that symbol-Il is not increasing in p (see the end of
Section 4).
It is also obvious that

(3.2) M(m,p,r)—B(s) implies M(m,p,2,r)—»B if s=p. (For s>p
symbol-Il is ftrivially true.)
Now we prove:

(3.3) Let p=N,, s=p be cardinal numbers. There exists a family &
such that F=p, p(F)=p, §F possesses property C(3,1) and it does not
possess propertly B(s).

PROOF. Let S be a set of power p. Let & be a system of subsets of S
such that &' =p, FFnF,=0 for F,F, €&, F,5=F, and F=p for every
Fe&'. Put §={S}ud’. It is obvious that & satisfies the requirements of
(3.3) for s=p.

(3. 3) shows that in the investigations concerning property B(s) the
assumption ¢ = 2, i.e. ¢=2 is essential.

MILLER’s result (1.4) can be stated as follows:

THEOREM 1. Suppose p=N,, q=p*. Then for every m and for every
r<N,

M(m, p, q,r)—B.

MILLER’s theorem can be considered as a generalization of BERNSTEIN’s
theorem which states that if p is infinite, then every family & (F —p, p(§)=p)
(without any further assumption for property C(g, r)) possesses property B," i. e.:

THEOREM 2. M(p, p,q,1)— B if p =N, for every ¢ and r.
MILLER’s counterexample (1.5) can be stated generally as follows:
THEOREM 3. M(2', p, 2, p)—~B if p is infinite.

Theorem 3 can be proved quite similarly as its special case for p =N,
cited in (1. 5) and therefore we omit the proof.

Theorem 2 shows that in the investigations concerning property B we
may always suppose that m=p, and Theorem 3 shows that if m>p, then
to obtain positive resuits we have to suppose r<p.

We mention that without using (¥) we can not decide the following

ProBLEM 1. M(N,, N,, 2, N))—~>B?
We can not prove without (%) that every & (p(&F)= N, §F < 2%) pos-
sesses property B.

1 See [4].
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It is obvious that the property C(q’,7r) is weaker than the property
C(q, r), provided ¢'>q.

Now we prove:

(3.4) M2 p,q,)—>B if ¢>2, p=N..

~ Proor. Put & =[S]" where S is a set of power p. It is obvious that
F=2", p(F)=p, F possesses property C(g, 1), but it does not possess
property B.

(3. 4) shows that we have to suppose ¢ = 2”, and since here we do
not want to discuss the difficulties caused by the continuum problem, we are
going to suppose g=p~.

It results that the best-possible generalization of Theorem 1 would be
the following :

(0) M(m,p,q,r)— B for every m, provided q=p*, p=N\,, r<p.

We can prove this only with the stronger assumption r7<p (see
Theorem 4) or with the restriction that m is not too large (see Theorem 5).
Both proofs use ().

The simplest unsolved problem here is

PROBLEM 2. M(No:1, N1, 2, N) — B?

As to the symbol-II the problems are more ramified. First we have to dis-
cuss the case m = p which leads to some interesting result too. This will be done
in Section 4. (3.2) shows that we have to suppose s = p. In Section 4 we
are going to prove that at least in the case p = N,, m = p we may suppose
s s,

So the best-possible refinement of the conjecture (o) would be the
following:

(00) M(m,p,r)— B(r") for every m = p = N,, provided r<p.

Now we have to distinguish two cases:

(i) If r is finite, then (oo) is false. However, it is always true for N, instead
of r* and using (x) corresponding to every m, p and r we can determine
the least s (eventually finite) for which M(m, p,r)— B(s) is true. These
results will be proved in Section 7. As a consequence of these results we
prove the topological theorem mentioned in the introduction (in Section 8).
There we state many conjectures which all would have been consequences
of 2-compactness of the topological product of N, Lindelof spaces — now
disproved — and which we can not disprove with our method.

(if) If r is infinite, (co) is very likely true, however, we can prove it
— using (%) — only with similar restrictions as in the case of symbol-I,
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namely we can prove that
M(m,p, 1)—>B(r*) for m=p>r>N,,
provided m is not too large (see Theorem 7), and we can prove that
M(m, p,r)—B(r*) for every m=p>r">N,
(see Theorem 6).

The simplest unsolved problems here are

PrOBLEM 3.

a) Mo, N, Ny) — B(N1) ?

b) M(R:;H—l: M, NJ)_* B(Rl)?

C) M(NWH: N, a~tl)_’B(Nz)?

The results on (o) and (oo) will be proved in Section 6. All the positive
results concerning the case m>p will be proved with the method of MILLER’s
theorem, and the proof runs always by induction on m. That is why we
need a generalization of the induction process used in [1]. This will be done
in Section 5 and as a corollary of it we obtain all the positive theorems

(Theorems 4—9) already mentioned.
In Section 9 we deal with the case of finite sets (p<N,) and with some

questions related to property B.
4. The symbol-Il in the cases m = p (p=N)). The following theorems
of A. Tarskl will play an important role in our investigations:
(*) LEMMA 1. Let S be a set, § a family such that (F)S S, S=N.,
|F| = Npg. Then
a) F =Na, provided & possesses property C(Nas1, Np) and cf (¢)s=cf (8).
b) F =N., provided § possesses property C(Na-1, 1) for an r<Np.’
Note that in TArSkl’s paper the theorems are proved under the stronger
conditions that § possesses the properties C(2, Ng) and C(2, r), respectively,
however, the proofs can be carried out in the same way for our case too.
LEMMA 2. Let S be a set, § a family such that (F)S S, S=Na, F| =7
where r is finite. Then § = N., provided & possesses property C(Neui, 7).
Lemma 2 is a corollary of the fact that [S] —N. for every finite r.
Note that the proof of Lemma 2 does not make use of ().
4.1y M(m, p,r)—B(m*) for every m,p,r.
M(m,p,r)—~B(m) if r>p and p=N\, (N, =m=p).

5 See [2], Theorem 5, I, p. 211 and Corollary 6, p. 213 for a) and b), respactively.
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Proor. The first statement is trivial, the second is to be seen quite
similarly to (3. 3).

REMARK. [If m is finite, m=2, then M(m,p,r)—>B(m) and
M(m, p, r)—~B(m—1) is true under the same conditions for p,r respectively.

(4.1) shows that we may always suppose r=p.

(4.2) M(m, N, r) = B(2) for every e if m<Na and r<Na. If r=Na,
then the same is true for m<N.ja.

Proor. Let § be a family (p(§F)=N., F =m) which possesses pro-

perty C(2,r). It is obvious that the set F— |J  F’is of power N, and so
FEG, F#F

it is non-empty for an arbitrary F¢ &. Let xx be an element of this set and put
B={xr}reg. We have BnF-=1 for every F€§, hence § possesses pro-
perty B(2).

(4.3) M(Neia), Nay Na) = B(Noje) for every e.

ProOF. Let & be a family such that p(F) = Na, F = Nesw), and suppose
that & possesses property C(2, Na). Let F={F.},- o, be a well-ordering of &.
The set F,— |J F. is of power N. for every »<wm 4. Let x, be an

e

element of it.

EB={x,.},,.._¢mrﬂa). It is obvious that BnF,==0 for every » <o q
and BnF,< Ny for every ¥<ogw, since if »'>», then x,-¢F,. It follows
that & possesses property B(N.q).

Now we show that (4.2) is best-possible in “s”, i.e.

(4.4) M(Nefta), Re, No)—=>B(s) if  s5< Nefioy-

ProOF. We are going to suppose that « is of the second kind. If « is
of the first kind, the statement can be proved quite similarly. Let S be a set
of power N, and let S= {xs}s-., be a well-ordering of type w, of S. Let
{@v}v w4, De a monotone increasing sequence of type @upq of ordinal
numbers less than « cofinal with e. Put S,.z{xg}gf.-;f.,% for every v < @ga).
Obviously, one can define the sequences {F)}ico. i, (Folvoo,q OF type
o4 Of subsets of § in such a way that — if we put F={F.}, gy U
U{F7}r o, then & possesses property C(2,N.) — and that the following
conditions hold:

(1) FF=F=N8. for v<wpua,

(2) S,CSF for ¥<tgm;

() FinFr=0 for v, v, V<o

Then p(§F) = N. by (1) and F—N.w). Suppose that the set B inter-
sects every set F of the family . Then B= N by (3), hence if s <N,
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there is a B'S B such that B'=s and there is a ¥, <w.s suchthat B'SS,,.
But this means by (2) that BnF, =s and thus § does not possess pro-
perty B(s).

It results from (4. 1), (4.2), (4.3) and (4.4) that to complete the discus-
sion of the case m=p (p=N,) we have to determine the value of symbol-II
in the following cases:

A) m=p, r<p (p =Ny,

B) m=Ns, p=Na, r=N. where cf(e)<F=a.

To obtain complete results we have to assume (%) in both cases. In the
case A) there remains an unsolved problem even if we assume (k).

First we prove the following negative result concerning A):

(€) (4.5) M(Na, R, 7)->B(@) if r<Na.
(If r is finite, the assumption () can be omitted.)
ProOF. Let &,, F, be families satisfying the following conditions:

(4.5.1) Fo=r", Fo— N,
(4.5.2) PF UF)=N.,
(4.5.3) FnF' =0 for every pair F,F €& U&,, F5&F'.

Put (§,)=3S,. By Zorn’s lemma there exists a maximal system $ of
subsets of S, satisfying the following conditions:

(4.5.4) XnF=1 for every X¢§, Fed,
XnY<r for every pair X,Y€S§, Xs£Y.
From (4.5.1) and (4.5.4) we get
(4.5.5) X—r* for every X€S§
and using the maximality of & we obfain:
(4.5.6) If the set B’ intersects every set F of &, then there exists an

element X, of § such that B'nXo =r.
On the other hand, using Lemmas 1 and 2 we get from (4.5. 1), (4.5.2)

and (4.5.4) that
(4 5. 7) S = W

It follows that there exists a one-to-one mapping /7(X) which maps
§ onto Fs. Put F3={h(X)U X}xc§ and define & as follows:

F=8§,U ;.

Since r*=N. by the assumption, by (4.5.2) and (4.5.5) we have
p(F)=N.. By (4.5.3) and (4.5.4) § possesses property C(2,r) and by
(4.5.1) and (4.5.7) F =Na.
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We have to prove that & does not possess property B(r). But if the
set B intersects every set F of &, then it has a subset B’ satisfying the
condition of (4.5.6), hence Bn X,=r for an X,€ 8 and therefore Bn F, = r
for F,=—h(X))UX,, hence for an F,€&. Thus & does not possess pro-
perty B(r).

REMARK. We have proved the following somewhat more general state-
ment: The family & constructed above is such that each set which infersects
every element of &, has to intersect an element of &% in at least r points.

Now we need some preliminary definitions.

DEer. (4.6) Let & be an arbitrary family and let S be a set such that
(§)E S. For an arbitrary subset X of § and for an arbitrary cardinal number
t we define the subfamily @(X, t, &) as follows:

QX t,F)—(F:FeF rFnX=1t).

DEr. (4.7) Let & and S have the same meaning as in (4.6). For an
arbitrary XS S we define the family &|X as follows:

|§F|X={Fﬂ Xtre§.

(Note that & X is not necessarily a subfamily of &.)
The following assertions are immediate consequences of the above
definitions.

(4.8.1) Let q,r be arbitrary. The families §(X,1,5) and &
property C(q, r), provided the same holds for &.

4.8.2) |§(X,1,F) X =t
(4.8.3) If the family & possesses property C(g,r) and t=r, then
Now we prove the following positive theorem concerning A):

(#) (4.9) Suppose r<Na. Then M(N., Nz, r) — B(r™), provided the following
condition does not hold:

(v) There exist ordinal numbers 8,7 such that e=g+1, r=N,, ¢f(#)=
=cf(y) and y<p.

(If r is finite, the assumption (%) can be omitted.)

X possess

ProOF. Let & be a family (p(§)= Na, §=N,) which possesses pro-
perty C(2,r). Put S=(&). Then S=N.. Let S={x,},-0, and F={F.}.-u,
be well-orderings of type w. of the set S and of the family &, respectively.
We may suppose that r* <N, for if not, then "= R, is regular and the
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theorem follows from (4. 3), since the symbol-1I is decreasing in r by (3. 1).
Now we define a subsequence {x, },<o, of S by induction on ¢ as follows:

Let x,, be an arbitrary element of F, and put F,= F, . Suppose that
the elements x, are already defined for every o<e, for a o<w,. Put

4.9.1) Se=1{%r,}o-90, Go=G(S,, 1, ).

It is obvious that S, =5<N. and by (4.8.3) G, =G,[S,.
But §,|S, SF(S,), thus using () we get

{4.9.2) G, <N except if S, =6"=N..

Put 0—Nj and suppose §+ 1=¢«. Then 3'9=N,3, |GolSe| =1 (by 4.8.2).
Using Lemmas 1 and 2 for the family §, S, we get

(4.9.3) Lj;. E“Tﬂ Ns< N except if r=Ny, cf(8) = cf(y)-
Thus it results from (4, 9.2) and (4.9.3) and from the assumption that
v) does not hold that { <Na Let u, be the least ordinal number u« for which
Sen Fu=0'
It is obvious that F. ¢§,, and so the set

Fuy— Qo) =Fuy— U (Fi,NF)
Fuele

is of power N., since Ffu N. and U (Fu,0F NF.) =ro<Ne.
F €@y

Thus there exists a » such that Xy € Fy, —((Go) U Sy)).
Let v, be the least » of this kind. Thus Xu,, Fu, are defined for every
o<w, and it follows by induction on ¢ that £

(4.9.4) Xig EFi x,.QEE((.j’g) and x,, Xy e, for every 0<o<ms.
Put B={x, }o-w,. Now we prove

{4.9.5) BnF.5#0 for every u<ma.

For if not, then there exists a least u" of this kind, and by (4.9.4)
there is a p,>u" in contradiction to the definition of F, .

(4.9.6) ﬁ'_fi&r" Jor every u < mq.

5 If such a u does not exist, then we slop with the construction and obviously one
<an prove in the same way that S, assures property B(r*) as we shall prove it later for B.
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For if not, then there exists a u"<w,, a subset B c B and an Xy, €B

such that B’—r B’—l—{x,a JSF, and o<g, for every Xy, € B, and this
obviously contradicts (4. g, 4), since then F, € G,,.

(4.9.5) and (4. 9. 6) just mean that the family § possesses property B(r").

REMARK. As we have already mentioned in Problem 3a) — for a special
case — we do not know whether M(Ns.1, Nzi1, N,) — B(N,..) is true or not
if @ and ¢ satisfy the assumption (v), i. e. if ¢f(8)=cf(y) and <3

Now we need the following

(*}) LEmma 3. Let S be a sef, S—N.1, and suppose that N. Is regular.
Then there exists a system § of subsets of S satisfying the following conditions:

~ p(8)=Na, S possesses property C(2,N.) and for an arbitrary S<S
(S'=Na:1) there exists an X € 8 such that X< S'.

Lemma 3 is a theorem of A. HAJNAL.

Now turning to the case B) we are going to prove that if N« is singular
and cf(e)< 8=, then the trivial result M(Ns, Na, No) — B(Ns-1) (see (4. 1))
is Dest-possible, i.e.

(%) (4.10) M(Nz, N, No) > B(Np)  if cf(@)<s=c.

We are going to prove this only for the case g==«, the proof can be
carried out similarly in the other cases too.”

Proof of the case §—«. Let &, be a family satisfying the following
conditions:

(4.10.1) &, =Nejiwy-1, p(F) =Nz and Fn F'=0 for every F,F'¢§,,
Fs=1.

N.i« being regular, we can apply Lemma 3 with &, instead of S and
we obfain that there exists a system & of subfamilies ¥ of &, satisfying the
following conditions:

(4.10.2) $=Nipw+1, P(S)=Nes)
and if § is a subfamily of &, such that
%Y ¢ § for which ¥ 5.

Let 8={¥ulu-omn aNd Fi=1{F}r 0.4,,, be well-orderings of type
Oy Of  and &, respectively. Let further {e}y-0,, be a monotone
increasing sequence of type .qq) of ordinal numbers less than « cofinal with «.

possesses property C(2, N jx)
'— N.ia+1, then there exists an

Q.?]!| =13

© See [6], Theorem 9.

% We mention that if ¢f(a)< ¢f(f) (especially, if § is of the first kind), then the
theorem is easy and can be proved without using (%). But for the cases ¢f(8)=cf(a) we have
to use the same complicated proof as for the case f=a. It is possible that a simpler
proof can be constructed in this case too, but we were unsuccessful in doing this.

7 Acta Mathematica XII'1—2
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By (4.10.2) %¥.E&, and X, — Ny for every u<ouma. Let
K= {F}r o, De a well-ordering of type wyw of ¥..

The set F, — being an element of &, — is of power N., and so it
can be split into the sum of N, disjoint subsets of power N.,, that means:
there exists a sequence {F,(7)}y-w, Of type wa of subsets of F, satisfying

the following conditions:

(4.10.3) Fi(y)=Na, for every y<wa, Fi(z)nFi(r)=0 for every
710 7<0e, 1Y, and F= | Fi(y) where u<®q@ii, ¥<Oga are
arbitrary. e

Now, corresponding to every u<m.ay.1 we define a family .. as

follows. First put F*(y)= U F. (), and then put &5, ={F"(?)}y-w, -
"V"‘-“}rf”a'}

We have, for every lu<ala.n,«(.,)+1,

(4.10.4) F2p=Na, F(7) 0 F (1)=0 for 7, 7:<wa, 71572, D(F2,)=
=N, and (Fon) = (%o).

In fact, the second statement follows from (4.10.1) and (4.10.3), the
first one is a corollary of it, while the third and the fourth ones are conse-
quences of (4.10.3), since

FLZ/)_: Z ﬁ’jz Z Nq,,'= N. for every i< Wyial, 7 < Wq.

V‘f_w(..f'[“) v—:m,‘ﬂ“]
Now we put
SMF — SF-l U U L&’-‘FQ,I!L-
I
We have
(4.10.5) P(F)=Na,

since p(F,) = p(F2.) = Na for u<®.ma by (4.10.1) and (4. 10.4).

Taking into consideration that N. is singular and therefore ¢f(a)+ 1<¢,
we get from (4.10.1) and (4.10.4)
(4.10.6) C’TESH;-'Z Faw = Nefayt + Neiare1 - Na = Na.

Do fle)+1

We are going to prove that

(4.10.7) & possesses property C(2, No).

Let F, F' be two elements of & such that F== F’.

To see that Fn F'<N.,, we distinguish four cases: (i) F,F ¢,
(i) FEF,, F €3y, (i) FEFou, F' €Fopu, (ilii) FEFa,, F €F,, for
some u=£u'.

In the cases (i) and (iii) F and F’ are disjoint by (4.10.1) and (4. 10.4),
respectively. If (ii) holds, then — by (4. 10.3) — either FnF =0 if F&%,,
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or if FEX,, then F=F, for a v<w.« and F'=F'(y) for a y<w. and
FnF’—_—F::(:’)::NuW<Na- L

Suppose now that (iiii) holds. By (4.10.2) we have X.n % <Nefa,
since w==u’. It is obvious that (F)— | F,and so Fn F'= | (F.n(FnF’))

B a1 F )+
but either F,nF or F,nF’ is empty if F,&%.n ¥, hence
FnF'— U (F.n(FnF)).
F,E%Mﬂ”&}'

~ Taking into consideration that by (4.10.3) F.nF<N,, it results that
Fn F’<N. in this case too.
It remains to prove that

(4.10.8) & does not possess property B(N.).

Let B be a set such that Bn F<N, for every F¢&. Then, especially,
corresponding to every T <. there exists a subscript »(7) <.« such that

BnF.<N

It results that tmere exists a subfamily & of &, and an ordinal number
Vo< Wepey SUCh that &'=N.e and BnF<N,., for every F, € §". But, by
(4 10. 2), then there exists a u,<®.qam+1 such that ¥, EF. Thus we have
F“‘nB<&a for every » <., and so Bn(%M)_ng} N., <N.. But by
(4.10.4) 3>u,, consists of N, disjoint subsets of (¥,,), consequently there is

an Fe&F:, ©&F such that

Fr(r)

BnF=0.

Thus by (4.10.5)—(4. 10.8) the case #=-« of (4.10) is proved.
From (4.3) and (4.10) we obtain the following

(¥) COROLLARY. Suppose p is infinite. Then M(p, p, p)—B(p) holds if and
only if p is a regular cardinal number.

This should be compared with BERNSTEIN’s theorem cited as Theorem 2
in Section 3.

REMARK. After (3. 1) we have stated without proof that M(m, p, r)—B(s)
is not monotone increasing in p. This can be seen e. g. by the following
examples:

M(N,, N, N;) » B(N)) holds by (3.2) but

M(Sn Ni, 8 2)_*B(R|) by (4 1); or

M(R‘Z, N, R|) — B(xl) by (3. 2) but
(*) M(N;, N;, N)—»B(N,) by Theorem 3 and (3.2) and
(*) M(NQ, Ng, N‘) —|"B(N1) by (4 5)

T*
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However, every example which disproves the monotonicity in question is
such that s> p. Under the condition s=p — and these are the only genuine
cases — the monotonicity seems to hold. Suppose namely that M(m, p, r)— B(s)
is true, s =p, and for the sake of simplicity suppose further that m, p,r,s =N,
and suppose ().

Distinguish three cases: (i) p<r, (ii) p=r, (iii) p>r. If (i) holds, then
by (3.1)and (4.1) m* =s, hence again by (3.1) and (4. 1) M(m, p’, r)—>B(s)
is true for every p'>p.

If (ii) holds, then m=p by Theorem 3 and by (3.2), and so p'>m,r
for every p’>p, hence M(m, p’,r) = B(s) is true by (4.2).

If (iii) holds, then the implication is again trivial if m=p, and if m>p,
then by Theorem 6 which will be proved in Section 6 M(m,p’,r)—B(p*)
is true for every p’>p.

By a slight modification of the proof of Theorem 6 one can obtain the
following theorem:

() If & is a family, p(F)=p', F=m and F possesses property C(2,r),
then there exists a set B such that BnF=p for every F¢ &, provided that
the above-mentioned inequalities hold for the cardinal numbers in question.

Put & ={BnF}, g It is obvious that & possesses property B(s),
provided the same holds for &', but p(F')=p, §=m and § possesses
property C(2,r), hence M(m,p,r)—B(s) implies M(m,p’,r)—B(s) in this
case too.

[t is possible that one can find a simpler proof for the monotonicity
which does not use the hypothesis (x), but we were unsuccessful in doing this.

5. Generalization of Miller’s inductive construction. Let (§) be
a family and S a set, ()< S.

Der. (5.1) Let & be a subfamily of & and put §'==(§'). & is said
to be closed in & with respect to the cardinal number ¢ (or briefly #-closed
in § if FeF and FnS =1t implies that F¢ §'.

It is obvious that if & is an arbitrary subfamily of &, then (the inter-
section of any number of f-closed subfamilies being #-closed) for every f there
exists a minimal f-closed subfamily of & containing &. However, we need
concrete constructions for #-closed families containing §".

DEF. (5.2) We define the f, & closure of & in §: Clos(F, 5,1, &) for
every & First we define a sequence {§.},-, of type w. of subfamilies of & by
induction on » as follows:

Put §,=39" and S,=(G,). Suppose that the families . as well as the
sets S, are already defined for every u<» for a »<w..
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Put S;— U Suy §=G(S5, 1, F) (where § is the function defined in

(4.6)), and S, ().
Thus LJ, is defmed for every »< w.. Now we put

Clos (F, &, ¢, &) = U G»-
?'-..'UJE

As an immediate consequence of the definition we get that
(Clos (&7, &, t,8))=U S, and & <Clos (F, F, 1, ¢).
P e

We have:
(5.3) Clos (5, &F,t, &) is t-closed for every t<Nuje.’

PROOF. Let F be an element of § such that Fn(Clos@,5, 8)=".
Then FnS;,=t for a suitable »,<w. and thus F¢ Ljva“Clos(er,fr' t, &).

In what follows in this section let & be a fixed family, () = S. Suppose
that p(F)=p, F=m, F possesses property C(g,r), where the cardinal
numbers m, p, q,r, s and ¢ satisfy the following inequalities:

() m>p, =R 2=g=p*, rep,rHEs=p, r=t<p.

Every statement proved in this section depends on the assumption (°).
We are going to use the notations p=N., m=—Nz, r=N,, s=N; alter-
natively (provided r and s are infinite).

Der. (5.4) Let &(f) denote the index of the least N greater than /.
(e(fy=0 if £ is finite and N.n=1¢" if ¢ is infinite.) This means that N..
is always regular. Put briefly Clos (§,7) for Clos (§, &, ¢, &()).

We need the following
(%) LEMMA 4. Let § be a subfamily of &, &' =m’ =p. Then Clos(F, t)—m,
provided one of the following conditions (¢) and («e) holds:

(«) r=1t and the following condition does not hold:

(vv) There exist ordinal numbers 3 and y such that m'-—=NWg, r==N,
and cf(3) —cf (7).

(ae) r<t.

(Note that in case r is finite, the hypothesis (%) can be omitted.)

Fal

Proor. Let §, denote the families defined in (5.2) corresponding to
the given &',¢ and #(¢). First we are going to prove by induction on » that

(1) @,:m’ and S, =m’ for every v <mgy.
* It would be easy to see that (5.3) holds under more general conditions too,

but we do not need this. E.g, it is true that for every ¢ either Clos (5, ,t0) or
Clos (§, &, 1, 1) is f-closed.
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This is true for »=0, since @zéﬁ_‘:m’ by the assumption and

— (§) =p-m'=m’. Suppose that the theorem is proved for every u<»
where v < e,

Then S;= Zm =m'rv. But by (5.4) 7<N,f and therefore

=m'"Ny t—m since t<p=m'.

~ Now we obtain from (4.8.1), (4.8.2), (4.8.3) and (5.2) that
§»=¢"-G,Ss, G)/So possesses property C(g,r) and |§,/S;[=¢. On the other
hand, we have ¢ =(m’)", since g=p™ and p=m’.

Hence by Lemmas 1-and 2 each of the conditions («) and (««) 1mplles
that n.r,,[S,, m'. Consequently, we have §, =p-m'=m, since g-=pifg=p~.
Thus \,J_,,zm since §, contains §,, and similarly as for the case »=0 we
obtain that S, =m’, and (1) is proved.

Using that t<p, p=N, implies Ne»=p, we get from (1)
m=Clos(F, )= > m=m'p=m'

v g

%

and Lemma 4 is proved.

Let now & ={F,},-w, be a well-ordering of type o, of the family &.

Now we are going to define the sequences {&:(D)}s o, {Fo(f)}o o of
type ¢ of subfamilies of & as well as the sequence {S,(f)}o-4 Of subsets of
S for a ¢ =w; by induction on o as follows:

DEeF. (5.5) Put Fi(f) == {Fo)o-w,» Fot)= Clos(Fi(t), 1), So(f)= (Fu(?)).
Suppose that the families & (f), &,(f) and the sets §,(f) are already
defined for every o'<ao. Put

Fot)=U I, S:O)=U S @®.

If there exists an index o < such that F,¢&5(¢), then put ¢,— ¢ for the
least o of this kind, if not, then put oc=gq.
If o, exists, then put

Fit) =) U{T,,}, Fo(H)=Clos(Fs(1), 1), S.(O)=(Fo(1)).
Finally, if o, is defined for every o<wg, then put ¢ — wp.

(5.6) As an immediate consequence of the definition we obtain the
following results:

(5.6.1) F= u Fo(1),
(5.6.2) Fo (T () SETF(H)STFo() for every o'<o<g,
(5.6.3) S+ () ESs() S S (t) for every o'<o<y,

(5.6.4) §,(t) is t-closed in & for every o<¢ by (5.3) and (5.4).
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Der. (6. 7) Put ¥, (f) =5, ()—F5(f) for every o<¢.
By (5.5) and (5.6.1) we have

G.7.1) F= U %0
and by (5.6.2) 7
(5.7.2) W) n Ho(f)=0 for every o'<o<g.

Now we prove the following lemma:
(5.8) Suppose that F, € W(t) for some o<wp, o<¢. Then
(B F, S NSe(f) =1, and if t is finite, then
(33) Fon F,nSi(<t

Proor. First of all — &, (f) being #-closed by (5.6.4) — we may
suppose Fo N S(f)<t for every o’<a, for if not, then by the definition (5.1)
F, belongs to §.(f) in contradiction to (5. 7).

~ We distinguish two cases: (i) o=0,+1 for a 6,<0, (ii) o is of the
second kind.

(i) By (5.5) and (5.6.3) we have S3(f)= S,,(f), hence (88) holds for
every .

(ii) Let w, be the least ordinal number cofinal with ¢ and let {0y}, o,
be a monotone increasing sequence of ordinal numbers less than o of type
o, cofinal with o. We distinguish again two cases: (j) Ne=1?, (i) N>t

(j) We have by (5.5) and (5.6.3)

S:® =\ S0 = U 5,0

Hence FnSi(@= 2 S, NFe=t-N.—1 and thus (8) holds.

ey

(ji) Using again S; (r)— USa .(7), we obfain that (88) holds, for if not,

then F, n S;(f) contains a subset of power ¢ which — N; being regular —
is contained already in a set S, for an 5. <.

If ¢ is finite, then either (l) or (jj) holds for it, and therefore if ¢ is
finite, then (83) is true.

DEr. (5.9) By (5.7.1) and (5.7.2) corresponding to every o <wp there
exists exactly one o<¢ such that F, € %, (¢). Put an- F,—S8s(f) for this o

and put further ‘}t’a(t)—-{FQ}FoEjfgw. Put finally S, (t)-(?l[u(t)).
We need the following results:
It results from the assumption p(F)=p>¢ by (5.8) and (5.9) that

(5.10. 1) p(ifa(r)) =p for every o<, and it is obvious from (5.9) that
(5.10.2) the family ‘Jf,,(t) possesses property C(q,r) for every o<g.
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(5. 10. 3) Suppose F, € {,(t). Then

() Fon U 1.5 (t) =t and the equality is excluded if t is finite, and

CI"-.O'

(7y) Fon S () =0 for every o">o.
PROOF. (y) By the definitions (5.7) and (5.9) S, MESA(HESS: (t)
for every o'<o, hence by (5.8) we get F,n U & (t)<FO nSa(t)<‘-r (or <t

if # is finite).

(y7) It is enough to see that F,n F,-—0 for every F, € %,~(f). But

F,E8:(0) = S7(f), and so by (5.9) Fprn F,SFy nS;»=0.

Now we prove the following

LeEMMA 5. Suppose that the families “Jfg(t) possess property B(s) for
every o<«. Then the family & possesses property B(t™ +s), and if t is finite,
then it possesses property B((t—1)+s) too.

PROOF. By the assumption for every o<¢ there exists a set B, such
that B, S S,(f) and 1= B,nF,<s for every £ € T, (2).

Put B={J B,. By (5.7.1) for every o<wm; there exists a o<g¢ such

o - N _ .

that F, € d(f). Then F, € ¥, (¢), F,&F,, by (5.9), and B, intersects F, by
the assumption, hence we get

(1) BnF,#0 for every o<wm;.
Now we are going to prove that

(2) BnF,<t”+s for evety o<w.

Let now o, be the uniquely determined ordinal number for which F, ¢ 3., (f).
By the definition of B we have

(x) Bh"‘F;f"(B NFp)+B,,nFo+ U(B.NFy).

T a=o
o

Taking into consideration that B,< S,(f), we obtain from (5.10.3) that
UB-nF)= UG (OnF)=t and | (B,nF,)-=0. On the other hand,

a- 00 o0y g A

it results from (5.9) that S, (H)n Fy=F, for every Fy € ¥, (f), hence

BnF,= ngn F,<s. It follows that BnF,<t"+s for every o<wg. (1) and
(2) mean that & possesses property B(f™ -+ s). Suppose now that ¢ is finite.
The formula (x) holds in this case too. We get from (5. 10. 3) that the first
cardinal number on the right-hand side is less than ¢ and the third one is O,
while the second is by the assumption less than s in this case too. Now if
s is infinite, then the sum is less than s, hence less than (f—1) +s. If s is
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finite, then the first summand being less than ¢ is at most f—1, hence the
sum is less than (f—1)+s in this case too. It results from (1) that if ¢ is
finite, then & possesses property B((—1)-Fs).

LEMMA 6. The family & possesses properfy B, provided the same holds
for the families ¥.,(t) for every o<g.

PROOF. Lemma 6 is to be seen quite similarly to Lemma 5. Let B, = S,(f)
denote the sets satisfying the condition B.n F,+#0, F, €= B, for every
Fo € Ho(f). Put B= U B,. The proof of the fact that B intersects every F,

is the same as in Lemma 5. Let g, denote, as before, the uniquely determined
o for which F £F, ,(f)- 1t results from the definition (5.9) and from (5. 10. 3)
that BnF,—=B, an, hence FﬁE Bn FQ, since F €= B,,, and thus F,<=B,
therefore F, _,_B for every o <. ’

For the sake of brevity we introduce the following notations :

DEF. (5.11) The cardinal number m is said to possess property T(p, r)

if there exists an m’ (p=m’'<m) such that m’ satisfies the formula (vv) of
Lemma 4, i. e. if there exist ordinal numbers 8 and y such that

m'=Ng, r=N, and cf(3)=cf(7).

Quite similarly, p is said to possess property Q(r) if p satisfies the
formula (v) of (4.9), i. e. if there exist ordinal numbers «, and 7 such that
P=Ne=WNa1, =N, f(e)=cf(y) and y<ea.

Now we are going to prove
(*) LEmmA 7. p(J I (H)=p, the families 3.(t) possess property C(g,r) and
T (t)<m forevery o<q, provided one of the conditions (9) and (d0) holds:
(0) r—=1» and m does not possess property T(p,r).
(00) r<ft.
(If # is finite, the hypothesis (%) is not used.)

PROOF. The first two statements were proved in (5.10.1) and (5.10. 2).
We have to prove the third one. It is obvious from the definitions (5.7) and
(5.9) that %Efga‘)éﬁ,—(t} We prove by induction on o that &,(f)=
=p-o-+1<m for every o<g¢.

By the definition (5.5) F4(f) —N.—p and, since by the assumption
either r<{¢ or m possesses property T(p,r), by Lemma 4 Fo(t) =
= Clos (F3(0), ) =p
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Suppose that we have F(f)=p-0'+ 1 for every o'<o for a 0<o<g.
Then by (5.5)

F= 2 FO=2p-0+1=p-G

Now Fo()=F;(D+1=p-o+1.

We have ¢ =wg from the definition (5.5), and therefore p-o+1<m,
hence we may apply Lemma 4 again to &, (f)= Clos (§:(f), f) and we obtain
F,()=p-0+1, thus this statement is proved for every o<¢ and Lemma 7
is proved.

Note that from the statement &F,(f)=p-0+1 (0<¢) it results that
¢ = wg, but we do not use this fact.

Finally, to have a view of our results we need the following quite evident

LEMMA 8. The least cardinal number which possesses property T(N«, Ny)
(¢>7) is e+ 1 if cf(e) =cf(y), and it is Nusw 1 i @)+ cf(y).
ProoF. By the definition (5.11) we have to find the least & for which

there exists a @ such that « =8 <8, and ¢f(8)=cf(y). It is obvious that
¢h=08"+1 for the least ordinal number @ satisfying this condition, and

#=e if cf(€)=cf(y).

Suppose now c¢f(e)#cf(y). 3>« has the form " =e+§” and
cf(e+8")y=cf(y) can hold only if #” is of the second kind. But then
cf(e+8")y=cf(8") and the least ordinal number 8" of the second kind

satisfying cf(8") =cf(y) is w.y)-
Let for the sake of brevity =(«, y) denote the index of the least cardi-
nal number which possesses property T(Na, Ny).

EXAMPLES.
(n,0)=w-+1, t(®)=o+l1, (o+1,0)=w-21+1;
or more generally

tet+u,y)=c+o,+1 for 1=u=w, if y=e¢ and o, is regular.

6. Proof of the results concerning the conjectures (o) and (oo0).

(#) THEOREM 4. Suppose p=N,, 2=qg=p* and r-<p. Then for every
cardinal number m.
M(m,P» q, r)_’B
(Note that if r is finite, the hypothesis () is not used.)

ProOOF. For m =p the theorem follows from Theorem 2 (BERNSTEIN’S
theorem) if we use that symbol-1 is decreasing in m (by (3.1)). We prove
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it by induction on m for every m>p. Suppose that the theorem is true for
every m’<m. Let now § be a family (p(§F)=p, &F—=m) which possesses
property C(g, r).

Put f=r*. Then the conditions (°) are satisfied for the cardinal num-
bers in question and r<t. Hence we can carry out the construction described
in Section 5 and we can apply Lemma 7. It results that the families 0]
possess property C(g, ), p(3.(t)=p and W.(f)<m for every o<g¢. Using
the induction hypothesis we obtain that the families %, (f) possess property B
and thus by Lemma 6 the same holds for the family & too. Q. e. d.

REmARK. Theorem 4 is clearly a generalization of Theorem 1 (MILLER’S
theorem) for infinite r’s, however, it is not best-possible in r as we have
already mentioned. It is possible that under the conditions p=N,, ¢=p*
the theorem holds for every r<p. We have to deal only with the case p—r-.

Here we can prove the following

(*) THEOREM 5. Suppose r=0N,, r*=p (i.e. p=Na=Ny11), 2=g=p*.
Then M(m, p, q,r)— B holds for every m less than Nyio. ;-

Proor. For m=p the theorem is true by Theorem 2. We prove it by
induction on m for every p<m<Nyiop1- Suppose that it is true for every
m’<m for an m satisfying the above condition. Let & be a family for which
p(§)=p, F=—m and suppose that & possesses property C(g, 7). Put {=r.
The conditions (°) hold for the cardinal numbers in question, and so we can
consider the families (,(r) (6<¢) defined in (5.9). Since by the assumption
cfl@)=cf(y+1) (cf(e)#Fcf(y)), it follows from Lemma 8 that m does not
possess properly T(p, r). It results from Lemma 7 (d0) that p(3.(r)=p,
3, (r) possesses property C(g, r) and H.(r)<m for every o<¢. Hence by
the induction hypothesis the families 9(,(r) possess property B. Consequently,
by Lemma 6, the same is true for &.

REMARK. We do not know for any i whether the assumption
m< Nyio,,,+1 can be omitted. We have formulated the simplest unsolved

problem in Section 3 (see Problem 2).
(¥) THEOREM 6. Suppose p>r=N,, then M(m,p,r)— B(r*) jor every m.

PRrOOF. If p=r+, then the theorem is trivially true by (3.2). Thus we

may suppose r+<p. In the cases m<p by (4.2) we have M(m, p, r) — B(2).
If p does not possess property Q(r), then by (4.9) M(p, p, r)—B(r)
holds. If p possesses property Q(r), then it obviously does not possess
roperty Q(r*) (since if r=N,, then r*=Nyu and cf(y)Fcf(y+1)).
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It follows again from (4.9) that M(p, p, r)— B(r") holds. As a conse-
quence of (3. 1) we get that M(p, p, r)— B(r—) holds in every cases. Now we
prove the theorem for m>p by induction on m as follows:

Suppose that it is true for every m'<m. Let & be a family
(p(F)=p, & — m) which possesses property C(2,r). Put ¢—r+. Then the
conditions () hold for the cardinal numbers in question and we can
consider the families 3,(f) (6<¢). Since r<¢, it results from Lemma 7 that
p(#.(H))=p, the families 3, (f) possess property C(2,r) and T()<m for
every o<¢. Thus by the induction hypothesis the families “Jﬁ,(t) possess
property B(r). Applying Lemma 5 we obtain that & possesses property
B(rtt+r), i. e. it possesses property B(r ).

REMARK. It is obvious from (3. 1) that under the conditions of Theorem 6
M(m, p,r)— B(s) holds for every s=r** too. In the case g=—2 Theorem 4
is a corrollary of Theorem 6. Similarly as in the case of Theorem 4, it is
possible that Theorem 6 holds with r= instead of r—.

(*) Tueorem 7. Suppose p>r=N,. (Put p=N\. r—=N,.) Suppose further
that p does not possess property Q(r). Then

M(m, p.r)—B(r)

for every m<Nuiw 11, provided cf(e) = cf(7).

PrROOF. For m<p the theorem is a corollary of (4.2). In the case
m=p we get from (4.9) that M(p, p, r) — B(r*) holds, since the assumption
of our theorem assures that p and r do not satisfy the formula (v) of (4.9).

We are going to prove our theorem for m=>p by induction on m as
follows: Suppose that the theorem is true for every m’<m, for an m satis-
fying the above condition. Let & be a family (p(F)=p, & =m) which
possesses property C(2,r). Put {=r. The conditions (°) are satisfied, and
so we can consider the families 9(,(r). The assumption cf(a) #cf(y) assures
by Lemma 8 that m does not possess property T(p, r). Thus from Lemma 7

we obtain that p(3((r))= p, the families ¥, (r) possess property C(2,7) and

H.(ry<m for every o< .

Thus, by the induction hypothesis, the families 9(,(r) possess property
B(r) and, consequently, by Lemma 5, the family & possesses B(r"r)
Since r is supposed to be infinite, this means that & possesses property
B(r*) too. :

ReMARKS. If p possesses property Q(r), we do not know whether the
theorem is true for m=p. (See the remark after (4.9) and Problem 3a).)



OK A PROPERTY OF FAMILIES OF SETS 109

If ¢f(e¢)=cf(y), then by (4.9) the theorem is true for m —p, but we do not
know whether it is true for m= p* or not. The simplest unsolved problem
here is M(No.1, Mo, No) = B(Noi1).

Here the difficulty is essentially the same as in Problem 3b). It is
obvious from the remark made after (4.9) that a positive solution of Prob-
lem 3b) would imply the positive solution of the problem just stated as well
as a positive solution of Problem 3a).

7. The discussion of symbol-II in the cases r<N, (p=N,). Note
that in the case r<N, (p=N,) symbol-1 is completely discussed by MILLER’S
theorem. The positive theorems concerning symbol-1I will be proved by
MILLER’s method quite similarly as the theorems of Section 6.

THEOREM 8. 8) M(Natu, N, 1) — B((r—1)(n+ 1)+ 2) if r is finite and
« is arbitrary.
b) M(m, Ne, ) — B(N,) for every m and «, provided r<N.."

PrOOF. a) We are going to prove the theorem by induction on n. For-
n=0 the theorem is proved in (4.9). Suppose that it is true for an n and
let & be a family such that p(F)=Ns, &= Nep11 and suppose that it pos-
sesses property C(2, r). It is obvious that the conditions (°) hold for the
cardinal numbers in question and we can apply the construction of Section 5
with £=r to our family &.

By Lemma?, p(:‘ﬁ'g(r)):p, the families 90,(r) possess property C(2, r)
and 30, (r) <N.-..; for every o<g. This means that o (ry =N, for every
o<q¢ and — using (3.1) — we get from the induction hypothesis that the
families S,(r) possess property B((r—1)(n+ 1)+ 2) for every a<q.

It follows from Lemma 5 that the family & possesses property B((r—1) -+
+(r—1)(n+1)-+2), i. e. it possesses property B((r—1)(n+2)-2).

b) The proof can be carried out by induction on m using Lemmas 3
and T quite similarly as in the previous cases, and so we omit the proof.

ReEmARK. The hypothesis () is not used in the proof, since it is not
used in the proof of Lemma 7 for the case of finite r.

With a slight modification of our construction it would be easy to
prove the following

THEOREM 9. Let & be a family, p(F)=Na, F = Nun, and suppose that
it possesses property C(2,r) for a finite r where « is arbitrary.

Let there be given a function I(F) which correlates to every Fe& an
integer 1(F).

10 Note that n denotes always a non-negative integer and r is supposed to be greater
than 0.
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Then there exists a set B such that
BN F=max(I(F),(r—1)(n+1)+1) for every F¢§.
In particular, if (F)=(r—1)(n+1)+ 1, then the set B infersects every F in
exactly (r—1)(n+ 1)+ 1 points.

We omit the proof.
Now we are going to prove that Theorem 8 is best-possible in s.

(¥) THEOREM 10. a) M(Nav, Na, 1)—>B((r—1)(n+1)41) if r is finite and
« is arbitrary.

b) M(m, Na, r)—+B(l) if r>1 is finite, « is arbitrary, m=Nueso and
I is an integer.

Proor. a) We have to prove that there exists a family & satisfying
the following conditions:

1 p_(ST)zNa.

2) F=Ratn-

(3) & possesses property C(2, r).

(4) If for aset B BnF+0 for every F¢&, then there exists an F, €&
such that F,FnB=(r—1)(n+1)+1.

We are going to prove instead of this the following more general
statement: There exists a family & satisfying the conditions (1), (2), (3) and
the following condition:

(5) There exist subfamilies &, &, of & such that & U&=,
F,.nF,=0 and if for a set B Bn F==0 for every FE&,, then there exists
an F, €&, such that Fon B=(r—1)(n+1)41.

It is obvious that (5) implies (4).

Put (§)=S. Obviously (1) and (2) imply S=Nu... Thus we have:

(6) If there exists a family & satisfying the conditions (1), (2), (3) and
(5), then for an arbitrary set S’ (S’ =Na.,) there exists a family & such that
(F)ES S and F satisfies the conditions (1), (2), (3) and (5) too.

We prove the existence of such a family & by induction on n. For
n—0 the theorem is proved in (4.5) (see the remark after (4.5))." Suppose
that for an n there exists a family & satisfying the formulas (1), (2), (3)
and (5). Let S be a set, S=Narns1. Then [SJN**" = Nepuia by the hypothesis
(*). Let {A}o-0,,,,,=[S]"* be a well-ordering of type @we..c1 of the set
[S]“aﬂr.

1t In case of finite r the construction given in (4.5) can be simplified as follows:
Suppose that &, = r instead of &, —r* and take for § the system of all subsets X of
(§F,) satisfying the condition XnF=1 for every F¢ &, instead of the system § defined
in (4.5.4).
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We are going to define a sequence {Fyfo-w,.,., Of type @ein1 Of
families (§,) &S by induction on ¢ as follows:
Suppose that the families &, are defined for a ¢ <wgep in such a
way that (F,)=Nay. for every o'<o. Then A, U U (Fp) =Nase, hence we
o'<e

can define a subset S, of S such that _
(7) S, ©S—(4,U U (Fp)) and  Sp= Nain.
]

By the induction hypothesis and by (6) there exists a family &; satis-
fying the formulas (1), (2), (3) and (5) such that

®) FDE S,

let &," and b?';’* denote the families satisfying (5) instead of &, and &,
respectively. -

Since & satisfies (2), we have ¥, =N... and we may suppose that
the equality holds. Let & — {F£*"},-u,,, be a well-ordering of type we..
of the family ;.

Since A, = Nayn, it is obvious that there exists a system §, of subsets
of A, satisfying the following conditions:

9) 8 —Narn, X=r—1 for every X€8& and XnV=0 for every
X, Ye$ X+Y.

Let $, = {X$}s w,., De a well-ordering of type @a.. of the set §&,.

We define the families ,, &,, &F, by the following formulas:

(10) =5
and

3 2%
y Ty ={XSUFF" hrcwgin

el a2
&‘FQ= ero U OF?..
It is obvious that (F,) = S,+ A,, hence (F,) =Nasn, and so &, is de-

fined for every o <®g.ns1 and the formulas (7)—(10) are satisfied for every
0 < iyl -

Put
(11) F— U F F= U & F= U .

[T | [ RRINS | [ A |
Now we have to verify that & satisfies (1), (2), (3) and (5) for n4-1
instead of n.
P(Fe)=N., since F; satisfies (1), and thus it follows immediately from
the definitions (9), (10) and (11) that

(12) p(EF)=N..
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It results immediately from (7) and (8) that
(13) (Fo)N(Fp) =0 if 0/ <0< prrr-

Thus, since the families SFL are non-empty, we have
(]4) E‘ :Nﬂ-li-—].

Now we prove:

(15) & possesses property C(2, r).

Let F, F’ be two distinct elements of &, Then F€&, and F €&, for
suitable ¢ and o', respectively. We distinguish two cases: (i) o =o', (ii) o0

M If Fe 3.1,, F'€§,, then FUF <r, since by (10) F,=&, ;O and
satisfies (3). _

If FEF,, F €, then FES,, F'=X{U F{*" for a suitable < may,
but by (9) X.S A,, hence by (7) and (8) FnF' —FnFY*" and FaF'<r
follows again from the fact that &; satisfies (3).

If FeF,, F ed s then F= XJU FU** F'— XLUFZ*" for suitable
¥, r (r==7v"), respectively. Using again that A, and S, are disjoint, we get

EfF =X 1.0 0f )

Thus, using that by (9) XInX5 =0, we get by the same argument as above
that FnF <r in this case too.
(ii) We may suppose o' <o. If Féffo, then by (7), (8) and (10) F and

=)

F’ are disjoint. If Feti;, then F= X?u for a suitable » and it results
from (7) and (8) that F'nF< X?, hence l)y Q) FnF=r—l<r.

We have
(16) F' nF=0.

In fact, ST':,'* nSF;j‘* =0 for every o, because & satisfies (5), thus it results
from the definition (10) and e. g. from the fact that &; satisfies (3), that
FonF,=0 and it is obvious from (7) and (8) that FynéF, =0 for o ==y,
hence &, nsF,=0 is true.

Now we prove:

(17) Suppose that for a set B BnF=0 for every F¢ &',

Then there exists an F, € 5, such that FUHBH“(I—])(H 2) -+

First of all it follows from (13) that B = Na...1. As a corollary of this
there exists a subscript ¢, such that 4, & B. Since by the assumption B has
to intersect every F ¢ &', we have that FnB =0 for every FE §,,. But by

(10) wh,—e"l" and it follows from the fact that oin, & o ; JQ sansfy (5), that
there exists an index », such that BnF&> = =(r—1)(n+1)+1. Put




ON A PROPERTY OF FAMILIES OF SETS 113

F'— X$'uFg*". Then F’ €&, Taking into consideration that by (7) and
(8) X% nF%™>* —0 and by (9) X3S A, SB, X —r—1, we obtain

BnF'=Xt+BnF2> =(r—1)(n+2)+1.

Thus the families &, & and &* satisfy by (12), (14), (15), (16) and
(17) the formulas (1), (2), (3) and (5) for n+4-1 instead of n, and so the
existence of such a family is proved for every n.

b) By (3.1) it suffices to prove that M(Nuiw, Ne, 1) == B(0).

Let {S.}.—» be a sequence of disjoint sets such that =Nz By the
theorem just proved and by the remark (6) there exists a sequence {&F.},w
of families such that (§,)< S, and &, satisfies for every n the conditions
(1), (2), 3) and (5).

Put § = U &,. Then p(F)=N. and & — Nu:w, since the &F,’s satisfy

(1) and (2) for every n and the &,’s are obviously disjoint,

Since the sets S, are disjoint, FnF =0, provided F€ &,, F €&, for
n=n'. Thus, taking into consideration that &, satisfies (3) for every n, it
follows that & possesses property C(2, r). But & does not possess property
B(/) for any I, since there exists an n, such that (r—1)(n,4+1)+1>7 and
the subfamily &, of § does not possess property B((n—1)(n,+1)+1),
because it satisfies (5).

Thus part b) of Theorem 10 is also proved.

REMARK. As we have already mentioned in (4.5), in the case n=0 of
the part a) of Theorem 10 the hypothesis (%) is not used. We do not even
know whether one can prove Theorem 10a) for n=1 without using (%).

8. Results on the topological products. A topological space X is
said to be x-compact if every family Il of closed subsets of it with void
intersection, ﬂ)] X =0, contains a subfamily SN (' <N.) with void

Xedl
intersection. : _

O-compactness means ordinary compactness.

1-compact spaces are the Lindelof spaces.

For the sake of brevity we introduce the symbol T(m, 2)— % to indi-
cate the following statement:

If & is a family of A-compact discrete topo!oglcal spaces, & — m, then
the topological product of the elements of & is »-compact.

As usual, T(m, 4)—» denotes the negation of this statement.

TYCHONOV’s classical theorem can be stated as follows: T(m,0)—0
for every cardinal number m.

8 Ac'‘a Mathematica XII'1—2



114 P. ERDOS AND A, HAJNAL

Let S be a set, S=m, and let u(x) be a measure defined on all subsets
of S such that the values of u(x) are O and 1, u({x})=0 for every x€S&§.

The cardinal number m is said to be of measure O if every o-measure
satisfying the above condition vanishes identically.™

A well-known result of ULam states that every cardinal number m less
than the first strongly inaccessible aleph is of measure 0."

The hypothesis () states that a strongly inaccessible >N, aleph is
not of measure O or more generally:
(#*) If m is strongly inaccessible, >N,, then there exists an m-additive meas-
ure satisfying the above conditions such that «(S§)==1.

If we use (¥), then Los’s theorem (Theorem 4 of [3]) states that

T(Noi1, 1)—1>x  for every ==l,

provided N. is regular and of measure 0."
Now we are going to prove the following

(*) THEOREM 11. T(Nain, @+ 1)—>a-n for every ordinal number « and
for every 1=n<o.

Before proving this theorem™ we compare it with Los’s theorem and
state the simplest unsolved problems. Put ¢==0, then our theorem states
that T(N., 1)—>n for every n=1, and so it is stronger than Los’s theorem
for the cases x»<w. Moreover it is best-possible, namely T(N,, 1)—>n-+1
is trivially true, since the topological product of ¥, Lindeldf spaces contains
a base of power N. for every «. For the case of singular x’s, e.g. for
# = the following problem remains open:

PROBLEM 4. T(No, 1) —»?

(T(Nw.1) > o +1 is trivially true and T(No, 1)—1>n for every finite n
is a consequence of both theorems.)

For »’s greater than « Los’s theorem is stronger, since our result
states nothing about x-compactness of the product of Lindelof spaces for
x>om.

But we do not know whether Los’s theorem is best-possible e. g. for
¥=w+1, since it states T(Nuos2,1) =w+1 and the following problem
remains open:

PROBLEM 5. T(Nus2, 1) >0 +27

(Our Theorem 11 gives only that T(Nose, @ + 1) == -+ 2.)

12 See (3], p. 14.

13 See [7].

14 See [3], Theorem 4, p. IT.

15 The proof is given on p. 115,
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For N.’s not less than the first inaccessible cardinal number Los’s
theorem does not state.anything. The reason for this is that if, at least, we
assume the hypothesis (¥+), then T(m,, 1)— «, is true where m,—N,, de-
notes the first strongly inaccessible cardinal number >N,. More generally
we have the following

(+*) THEOREM 12. If Na is strongly inaccessible, >N,, then
TN, &) > .

We mention here that even using (%) and (%%) we can not decide
whether T(N«, 1) —> ¢, is true if ¢ >e«, where N, is the first inaccessible
cardinal number > N,.

Our theorem shows that T(N, +n, ¢+ 1) —+e«,+n for every 1 =n<w,
but neither Los’s theorem nor our theorem disproves that T(m, ¢, 4+ 1) — @, + o
holds for every cardinal number m if N is strongly inaccessible >N,.

ProOF OF THEOREM 11. Let 7, be an integer such that (r,—1)(n+ 1)+
+1=(—1)n+2 (e. g. r,=2). By Theorem 10 corresponding to every n
there exists a family & ((&F) = S) satisfying the following conditions:

(1) 3(57)—_—'5 a

(2) ;GF_= xcﬁ-n W

(3) & possesses property C(2, r,).

(4) If for aset B BnF=£0 for every F ¢ &, then there exists an F, € &,
such that

FnB=(r,—1)(n+1)+1.

Let F = {F,}¢ w,., be a well-ordering of type w,., of &. Let X denote
the topological product of the discrete spaces Fy. The elements of X are the
sequences (Xg)p-o,., where x, € F,.

Corresponding to every finite sequence ¢, < +++ < 0. < @®a,, we define the
subset By,..o,((Xo)o0,,,) Of S as the set of oith components of (x,)o.-w,,, for
i=1,...,k i.e. we put

(5) By...oi((Xo)pcogn) = X1 X ESA(X="xp, v -+ VX =1X,)}.
Now we define the subset X, ., of ¥ as follows:

(6) (Xo)o-wgy, € Xp,...q, if and only if

By,..0((Xo)o-0g,, )N Fo.<(ro—1)n+2 for every i=1,..., k.

16 For the proof see p. 116.

B*




116 P. ERDOS AND A. HAJNAL

Put
M= {Xo.... it - “gr=0s)-
It is obvious that X, ., is a closed subset of X for every sequence
0, <+ <0< qw, and it results from (1) that the discrete spaces F, are
N..:-compact for every ¢ <wa.,. Hence it is enough to prove the following
assertions:
(7) n ,X‘?:-"?kzo
x?t"'?kegllt
and
®8) N X0 F0 if IS, S <Naw.
SN ¢
Proof of (7). Let (Xg)o—o,,, be an arbitrary fixed element of X. Let B be the

set of those x € S for which there exists @ ¢ < wqyn such that x = x; It is obvious
that B°n F, 0 for every ¢ <wa.., hence by (4) we have for a 9¢,<®a.,

B0 Fp,=(r—1)(n+1)+1.
“Put (ro—1)(n+ 1)+ 1= k. Then there exists a sequence ¢y < «+- <gj, such
that o,— o;, for an i, (1= i = ko), {xg;}lgsgxu=’f0 and {xgﬁ.‘}lﬁ“%o—Fou = F“ §

But this means that By g ((Xp)e-e,,,) N Fpl = ko< (re—1)n+2 and
thus by (6) (xp)e- v,., & X'..gy, Which proves that the product considered in
(7) is empty. '

Proof of (8). Let /(SIU) denote the set of ordinal numbers ¢ appearing as a
subscript o; (i=1,..., k) of an X, ., €8N. It is obvious that X, .,
+ Xo;..q if the sequences ¢i,...,0x and of,...,of are diiferent. Hence
IS IM, M <Nawn implies F(ON)< Neww. Thus it is sufficient to see that

Xo,...0. 0 holds for every 0i<®ain.
2(i=L. k), g% 0 '

Put &Fo = {Fy}yce, fOr every o< @a.n. Then p(F,)=Na by (1). &F,,
possesses property C(2,7) by (3) and &, =New (n—1=0) for every
00< 0qvy. Thus by Theorem 8a) there exists a set B such that

1=BnFy<(n—1)n+2 for every o' <oo.

It results that we can point out an element x; of BnF, for every o' <oy
and let x, be an arbltrary element of F, for ¢'=gq. It is obvious from (6)
that the sequence (Xp)p<w,,, S0 defined is an element of the product in
question.

PROOF OF THEOREM 12. Let & be a family, F — N, such that F<N,
for every Fe&. Let & ={F,}»-w, be a well-ordering of type @, of &. Put
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&Fy={Fu}u-r. Let X and X, denote the topological product of the elements
of F and &,, respectively. If @=(x2),,<% is an element of X, then ®/»

denotes the element (xu),—, of %,.
Let there be given a family 8L of closed subsets of ¥. Corresponding
to every X€ M and v<w, we define a subset V(X,v) of X, as follows:

Y(X,7)={@/v}¢cx.
The set {V(X, »)},.on is of power less than N, for every » <., since

N. is strongly inaccessible and X, <N, for every »<w,. As an easy conse-
quence of this we obtain that (| Y(X,7»)50 for every »<w., provided

IG@L
N X0 for every M S M, I < N,.
xedM
Put Z,—= [ Y(X,»). The Z,/ s form a ramification system. By a result

xedll
of P. ERDOs and A. Tarski” it follows from the hypothesis (#*) that there
exists a ® ¢ ¥ such that ®/v ¢ Z, for every v <wma.

Let X be an arbitrary element of &N. Then for an arbitrary »<w, there
exists a @, € X such that ®,/v = @/v. Since X is closed, it follows that
@cX, and so @€ (] X, i.e. X is g-compact.

xef
Now we state some unsolved problems which all would have been

consequences of T(N:, 1)—2. The answer to all these questions is very
likely negative, but we can not disprove any of them. In the formulation of
all these problems we consider () to be assumed.

PROBLEM 6. Let & be a family (§F =N», p(F)==No) such that every
FSF (F =N)) possesses property B. Does then & necessarily possess
property B too?*

The family & is said to possess property G if there exists a function
f(F) defined for every Fe&& such that f(F) is an element of F and

fFE)Ff(F) for Fist F.

PROBLEM 7. Let & be a family (=N, p(F)=N,) such that every
FCF (F =N,) possesses property G. Does then & necessarily possess pro-
perty G too?™

17 See the footnote * on p. 328 of [§].

18 The following theorem is an easy consequence of Tvchonov’s theorem: If §F is a
family of finite sets such that every finite subfamily of & possesses property B, then &
possesses property B.

10 This problem is due to W. Gustin (oral communication). It is well known and an

easy consequence of TvcHonov's theorem that if for a family & of finite sets every finite
subfamily of it possesses property G, then the whole family possesses property G too.

See e. g. [9].
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PrROBLEM 8. Let there be given a graph G of power N,. Suppose that
every subgraph G, =N, of G has chromatic number not greater than N,. Is it
then true that the chromatic number of G is not greater than N,?*

Now we would like to formulate a problem which does not seem to
follow directly from T(N, 1) — 2, but which belongs to this class of prob-
lems too.

PROBLEM 9. Let there be given a graph G of power N,. Suppose that
the edges of every subgraph G, of G can be directed so that the number of
edges emanating from an arbitrary vertex is finite, provided G,=N,.

Is it true that the same holds for the graph G?*

A positive solution of Problem 9 would follow from the following
generalization of TycHONOV’s theorem. (This generalization is probably false,
but as far as we know has not yet been disproved.)

ProBLEM 10. Let § be a family of finite sets, §=N,, and let
F={F,},-w, be a well-ordering of type w, of & Let X denote the Descartes
product of the elements of &, i.e. X is the set of all sequences (Xi)r- i,
X, € F,. A subset X of X is said to be N,-modified if there exists a set /
of ordinal numbers less than w,, /=N, such that x, =x, for every velf
implies that (x}),-«, belongs to X if and only if (x}), ., belongs to X.

Let &1L be a family of N,-modified subsets of X and suppose that the
intersection of the elements of every subfamily & of & is non-empty,
provided 9" =N,. Is it true that for an arbitrary family 91 satisfying these
conditions 1 Xs0?

xedll

9. Further problems. Suppose p<N,.® The theorem formulated in
the foolnote’™ on p. 117 or similar considerations show that {o clear up all
the problems it would be sufficient to determine the values of the symbols
M(m, p,q,r)— B, M(m, p, r) — B(s) for finite m’s, and so we now suppose that
m, p,q,r,s are finite. Obviously, if r=1, then the problems become trivial.
So the simplest cases when one can find unsolved problems are ¢ =2, r=2.

20 It is well known that if every finite subgraph of G has chromatic number not
exceeding n, then G has chromatic number not exceeding n. See [10].

2 As an easy application of Tvcuonov's theorem P. Ercos and R. Rabo proved
the following theorem:

If the edges of every finite subgraph of a given graph G can be directed so that
the number of edges emanating from an arbitrary vertex is less than a fixed integer =,
then the same is true for the graph G.

22 T, Garral pointed out that interesting and perhaps deep questions can be asked
concerning the symbols for p less than N,.
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One can ask whether M(m, p, 2,2) — B is true for a p>2 and for every
m. The only non-trivial remark concerning this problem is that

@.1) M(7,3,2,2)—B.

This is shown by the Steiner triplets for m=17.
The simplest unsolved problem here is

ProBLEM 11. Is it true that
M(m, 4,2,2)—-B holds for every m?

We can not even decide whether there exists an integer p, such that
M(m, p,, 2,2)—-B holds for every m.

ReEmARK. The example (9.1) is best-possible in m, i. e. M(6, 3,2,2)—B
is true and it is interesting that for m =6, M(6, 3, 2, 2) — B(2) is true too.
There remain interesting unsolved problems even if we omit the assumption
that & possesses property C(g, r) for some g and r.

It is obvious that if m is sufficiently large, then a family & with
p(F)=p, F=m has not to possess property B. Let m(p) denote the least
integer m for which such a family exists.

We have
©.2) m(p)é[zp '),

p
as it is shown by the subsets taken p at a time of a set having 2p—1 elements.

More generally, one can ask for the least integers m for which there
exists a family & (§=m, p(§F)=p) which does not possess property B(s)
where 2=s=p. Let m(p, s) denote this integer. (Obviously m(p, p)=m(p).)
Similarly as in (9. 2) we have

9.3) m(p, s)g(p+;_1).

(9. 1) shows that the estimations (9.2) and (9.3) are far to be best-
possible already for p=3. The following problem remains open:

PROBLEM 12. What is the order of magnitude of the functions m(p),
m(p, s)?

Let us now return to the infinite sets. We would like to raise several
new problems, most of which are unsolved, which are all connected to a
lesser or greater extent to the ones which we considered so far. To save
space we will only outline the partial solutions which we have succeeded in
obtaining up to the present.
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The first of these problems is the following:

(9.4) Let there be given a family & (§ —m, p(§) = p) such that every
subfamily & of & possesses property B(r), provided that & <m. Under what
conditions for the cardinal numbers m, p,r and s does then & necessarily
possess property B(s) or property B?

For the sake of brevity we introduce the symbols S(m, p, r)— B(s),
S(m, p,r)—B (S(m, p, r)—+>B(s), S(m, p,r)—B) to indicate the positive
(negative) solutions of the problems, respectively. It is obvious that the prob-
lem stated in (9.4) is closely connected with the possible generalizations of
TycHONOV’s theorem treated in Section 8, We point out only the simplest
and typical problems. A general discussion of this symbol seems to be
hopeless at present.

The example given by MILLER cited in Theorem 3 shows, if we assume
(), that
(%)(9.5) S(N;, Ny, 2) —>B.

This follows from the fact that the system of almost disjoint sets of
power N, constructed by MILLER has the following property: if x is an element
of the basic set and S(x) is the union of the sets belonging to the system
containing x and F is a set of the system not containing x, then

SiX)ﬂ=F< No.

Comparing Theorems 8 and 10 we obtain as a corrollary that
(*)(9. 6) S(N:, Ny, 4)—~B(4).
The following problems remain open:
PROBLEM 13. a) S(N;, N, 2) > B(2) or S(N;, Ny, 2)—~>B?
b) S(N., Ny, 4) —>B(B) or SN, N;,2)—-B?
The following problem concerning the symbol introduced in (9.4) is

the simplest one for which our theorems proved so far do not give any
information.

PROBLEM 14. Let r be an integer r= 2. Is it true that S(No, Ny, 7) — B(r)
holds?

REMARK. It is easy to see that a negative solution of Problem 14 for
any r would imply a negative solution of Problem 4.

The second question which arises concerning property B is the follow-
ing: Theorem 3 (MILLER’s example) assures that there exists a family &
(F=2% p(F)=N,) such that & possesses property C(2,N,), but it does
not possess property B. However, his example is such that (§)=0N, and
one can ask whether this is an essential restriction.
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Concerning this question, using (), we can prove the following
theorem:
(*) (9.7) There exists a family & (F =N, p(F)=N,) which possesses pro-
perty C(2,N,) such that it does not possess property B and satisfies the
following condition:

(1) (F)=N for every FCSF, §F=N,.

We only outline the construction.

Let S bea set, S=N,. Applying Lemma 3 stated in Section 4 we
obtain that there exists a system 8 of subsets of S satisfying the following
conditions:

(1) p(g =Ixar 3:81.

(2) § possesses property C(2, N)).

(3) For an arbitrary S €S (§'=N,) there exists an A€S such that
ACS.

Let § ={A,},.0, and S= {X.}.-w, be well-orderings of type o, of the
sets & and S, respectively.

Let 8, be a system of subsets of A, for which p(8,)=N,, §,=N,,
further let 8, possess property C(2, N,). Let 8, ={B.}.-», be a well-ordering
of type @, of the set 8§, for every »<w,. It is obvious that one can define
a monotone increasing sequence {u,},—o, of type @, of ordinal numbers less
than , such that u, >y’ for every x. € A, (hence for every x. ¢ B, for every
n< o).

Put Ci =B U{X.,+} and F={Ci}vcu, new,. It is obvious from (1)
and (2) that F=N,, p(F)=N, and & possesses property C(2, N,). The fact
that & does not possess property B follows from the property of & stated
in (3) (taking into consideration that a set which intersects every element of
& has to be of power N,). Finally, it is easy to verify that if & —=N,, then
(F)=N, for every F'C§, since if F =N,, then F either contains N, C\’s
with the same v or N, C.’s with pairwise different #’s.

The following refinement of the problem solved in (9.7) seems to be
interesting. Let us say that the set X is almost contained in Y if ¥—X is
finite.

PrOBLEM 15. Let & be a family (p(F)=N,, § =N,) such that & pos-
sesses property C(2, N,) and suppose that (instead of (/)) it possesses the
following property:

At most N, sets belonging to & are almost contained in a denumerable set.

Does such a family & necessarily possess property B?
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The answer is probably negative to this question too, but we can not
disprove it even if we omit the assumption that & consists of almost dis-
joint sets.

The following question is connected with Problem 3 (namely a posi-
tive solution of it would imply a positive solution of Problem 3b)):

PROBLEM 16. Put S= {?},.0,., (S=Nop).

Let S, denote the set {u«},., for every » <weu.. Then S,=N., and so
one can define a splitting of S, onto the sum of N, disjoint sets such that

S,=U S, and S/<N. for every »<wuu.
[

Is it possible to define the sets S, in such a way that for every
v<wmgyu Of the second kind which is not cofinal with w, there exists a
monotone increasing sequence {¥:}..., of type ¢ of ordinal numbers less than
v cofinal with » and such that S;*S S;* for every n and for every v<7' <¢?

A similar but simpler problem is the following one:

PrOBLEM 17. Let S be the set of ordinal numbers less than o,. Is it
possible to define a function f(») on S such that f(») €S, f(¥)<» for every
v <, which has the following property: If »<w, and » is of the second
kind, then there exists a sequence {v.},—. Of type @ of ordinal numbers less
than » such that »,—» and f(v..))=w», for n=0,1,2,.... This problem
is interesting in itself and seems to be very difficult.

The positive solution of the following problem would imply a negative
solution of an immediate generalization of Problem 9, namely it would assure
the existence of a graph G of power N, the edges of every subgraph of
power W, of which can be directed so that the number of edges emanating
from a vertex should be finite, but the whole graph can not be directed in
such a way.

PROBLEM 18. Let S be a set of power N,. Does there exist a family
& such that (F)=S, &F =Noi1, p(F)=N,, and which has the following
property:

(1) If S8, §'=N,, then there exist at most N, sets F belonging to
the family such that FnS = N,.

REMARK. On the one hand, we can not disprove Problem 18 even if
we require that & should possess property C(2,N,), on the other hand we
can not prove it if we require only that & should possess the following
weaker property instead of (1):

Every 'S8 (S8'=N,) contains at most N, elements of the family.
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We construct the graph G mentioned above as follows: Suppose that
the family & and the set S satisfy the requirement of Problem 18. Let the
set of vertices of G be FuUS. The edges are the pairs (F,x) where FC&
and x € F. It is easy to see that G has the property required.

(Received 15 January 1960)

Added in proof (MaRrcH 3, 1961). The manuscript of this paper had
been written before the authors knew that A. TArski has disproved the hypo-
thesis (*%). (See A. TARSKI, Some problems and results relevant to the founda-
tions of set theory, Proceedings of the International Congress for Logic,
Methodology and Philosophy of Science (Stanford, 1960).)

Thus we have no arguments to prove our Theorem 12 proved with the
help of this hypothesis. It seems that the theorem is false at least for the
inaccessible cardinals m which are strongly incompact.

It is obvious that the discussion of the unsolved problems concerning
the symbol T'(m,4)—x has to be changed in some places knowing the new
result of A. TARSKL
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