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1. Introduction. In this paper we are going to generalize a problem 
solved by MILLER in his paper [l] and prove several results concerning this 
new problem and some related questions. We mention here that some of our 
theorems (Theorems 8 and 10) have the interesting consequence that the 
topological product of Ks l-compact spaces (Lindelof spaces) is not necessarily 
k-compact for any finite k.’ 

DEF. (1. 1) Let 8 be a family of sets, ZF is said by MILLER to possess 
property B if there exists a set B such that 

FnB#O for every FC6, 

F 5~: B for every FCS. 

DEF. (1.2) Let ZF be a family of sets. Let p*(3) denote the least 
cardinal number (I for which FS p for every F< 8. If Pzp for every FEb, 

we write 161 z p. In what follows p(B) ==p denotes briefly that the family kS 
possesses the property 

p”(3) =p, ~3’ 2 p, 

DEF. (1.3) Let $7 be a family of sets and let q 2 2, r 2 1 be cardinal 
numbers. The family 3 is said to possess property C(q, r) if n F<r for 
every subfamily ZF’ of 67, provided B’z q. +‘r 4i;’ cc 

NOTE. If for a family h7 ISi 5 r and 3 possesses property C(2, r), then 
8 consists of almost disjoint sets. 

The result of MILLER which is our starting point can be stated as follows: 
(1. 4) Let p be an infinite cardinal number, n an integer (n.0) and 

let $7 be a family which possesses property C(p’,n> such that lS7;1 Zp. 
Then the family 3 possesses property B.’ 

1 In our example the spaces will be discrete ones. The generalized continuum hypo- 
thesis is used in the proof. As far as we know this result is new already for k-2. This 
theorem should be compared with a theorem of J. tos [3] (see Section 7). 

1 See [I], p. 35, Corollary. 
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To show that this result is best-possible MILLER proves the following: 

(1.5) There exists a family 3 (p(8) = N,, $ =2so) which possesses 
property C(2, No) and fails to possess property B.S 

However, one can ask what happens if d possesses property C(2, K,) 
and 18 1 is supposed to be greater than K,. 

On the other hand, one can sharpen property B as follows: 

DEF. (1.6) Let 3 be a family, s a cardinal number, s 2 2. 8 is said 
to possess property B(s) if there exists a set B such that F II B # 0 and 
FnB<s for every Feb. 

Our problems will be of the following kind. Let 8 be a family of sets, 
and let m,p, q, r, s be cardinal numbers such that 3 = m, p(S) =p and 
suppose that 3 possesses property C(q, r). Under what conditions for the 
cardinals m,p, q, r, s has $7 to possess the properties B and B(s), respectively? 

As the easy example (3. 3) will show, nothing can be said about pro- 
perty B(s) if q> 2. The case q = 2 contains the essential difficulty in the 
researches concerning the property B too. 

The problem just stated is clearly a generalization of the problem treated 
in (1. 4) which is a corollary of [l], Theorem 1. We remark that it would 
be possible to generalize in a quite similar way the theorem itself not only 
its corollary, however, such a generalization does not seem to need new ideas 
and its formulation would be very complicated. 

We restricted the formulation of the general problem with the assumption 
p(S) ==p instead of MILLER’S original assumption 181 2 p. This has no 
importance in the problems concerning property B, however, in the problems 
for property B(s) it seems to be an essential restriction (see the remark at 
the end of Section 4). 

2. Definitions. Notations, We use the usual notations of the set theory. 
We are going to list only those where there is a danger of misunderstanding. 

In what follows 3, (a”, . . . will denote families (sets of sets); capital 
letter will denote sets; x, y, . . . are the elements of the sets; m, t, p, q, r, s 
denote cardinals; i,j, k, 2, n, . . . denote non-negative integers; Q, ,& . . . denote 
ordinal numbers. Union and intersection of sets will be denoted by U and fI, 
respectively. 

f+ denotes the least cardinal greater than t (if f is finite, f+= t+ 1). 
t- is the immediate predecessor of the cardinal t if it exists, if not, then f--t. 
(If f is finite, f-=f-I for t>O and t-=0 for r=O.) 

8’(S) denotes the set of all subsets of S. 

z See [l], Theorem 3. 
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If (x.~),,+ is an arbitrary sequence of type sp of not necessarily different 
elements xv, then {x~}~,<~ denotes the set of all x,‘s forthcoming in the 
sequence. This distinction will be sometimes omitted if there is no danger 
of misunderstanding. 

Let ~{x) be an arbitrary property of the elements of a set H. The 
set of all x c H which satisfy y(x) will be denoted by {x:y(x)}. (We are 
going to use the logical signs A (and), v (or) in the formulation of these 
formulas.) 

The sets {X:XCS ‘, X= r}, {X:XCS AX< f} will be denoted by 
[sit, [SI-Y respectively. 

For an arbitrary family 8 the set IJ F is denoted by (3). Other special 
F&F 

notations concerning families will be introduced later. 
For the study of the problem stated in the introduction we introduce 

the following symbols: 

DEF. (2.1) WC/J, q, 0 -+ B indicates the statement that every family 3 
which possesses property C(q, r) possesses property B, provided p(Z) =p 
and $==. 

DEF. (2. 2) M(m, p, r) -+ B(s) indicates the statement that every family 3 
which possesses property C(2, r) possesses property B(s), provided p(s) =p 
and 8 = m. M(m, p, q, r)+ B and M(m, p, r)-+ B(s) denote the negations 
of the corresponding statements, respectively. 

To exclude trivial exceptions here we assume once for all m >O, p>O, 
q> 1, r>O, s> 1. 

We call briefly the symbols now introduced symbol-l and symbol-II, 
respectively. 

The proof of some of our theorems makes use of the generalized 
continuum hypothesis or of the so-called measure hypothesis stated in [5].. 
These hypotheses will be cited as hypotheses (*), (**) and the corresponding, 
theorems will be denoted by the same signs, respectively. 

3. Preliminaries. A short summary of the content of the follow-- 
ing sections. We briefly say that one of the symbols is monotone increasing 
(decreasing) in one of its variables, e. g. in m, if the fact that it is true for 
M, p, q, Y, (s) implies that it is true for m’,p, q, r, (s) for m’ 2 m (m’ z m), 
respectively. The following monotonicity properties are immediate conse- 
quences of the definitions (2. 1) and (2. 2): 

(3. 1) Both symbols are decreasing in m and r. Symbol-I is decreasing 
in q. Symbol-I is increasing in p, symbol-II is increasing in s. 
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We call attention that symbol-II is not increasing in p (see the end of 
Section 4). 

It is also obvious that 

(3. 2) M(m,p, ++B(s) implies M(m,p,2,r)-+B if ssp. (For s>p 
symbol-II is trivially true.) 

Now we prove: 

(3. 3)_L.et p 2 WO, s sp be cardinal numbers. There exists a family 8 
such that F=p, p(g) =p, 3 possesses property C(3, 1) and it does not 
possess property B(s). 

PROOF. Let S be a set of power p. Let 3’ be a system of subsets of S 
such that ,$? =p, Fl n F?= 0 for F,, Fg C 9, F,+ F2 and F=p for every 
Fc8’. Put $={S}uF. It is obvious that 8 satisfies the requirements of 
(3.3) for s =p. 

(3. 3) shows that in the investigations concerning property B(s) the 
assumption q 5 2, i. e. q=2 is essential. 

MILLER’S result (1.4) can be stated as follows: 

THEOREM 1. Suppose p zz No, q zp+. Then for every m and for every 
r < N,, 

M(m, P, q, r) -+ B. 

MILLER’S theorem can be considered as a generalization of BERNSTEIN’S 

theorem which states that if p is infinite, then every family ZF (3 =p, p($)=p) 
(without any further assumption for property C(q, r)) possesses property B,” i. e.: 

THEOREM 2. M(p, p, q, r) -+ B if p 2 K, for every q and r. 

MILLER’S counterexample (1. 5) can be stated generally as follows: 

THEOREM 3. M(2”, p, 2, p)-I+ B if p is infinite, 

Theorem 3 can be proved quite similarly as its special case for p= K, 
cited in (1. 5) and therefore we omit the proof. 

Theorem 2 shows that in the investigations concerning property B we 
may always suppose that m sp, and Theorem 3 shows that if m>p, then 
to obtain positive resuits we have to suppose r<p. 

We mention that without using (*) we can not decide the following 

PROBLEM 1. M(N,, No, 2, NJ-I-B? 

We can not prove without (*) that every k? (p(Z) = No, $~2~~~) pos- 
sesses property B. 

4 See [4]. 
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It is obvious that the property C(q’, r) is weaker than the property 
C(q, r), provided q’ > q. 

Now we prove: 

(3.4) M(2”,p,q, I)-;+B $ q>2l’, pz#“. 

PROOF. Put B = [S]” where S is a set of power p. It is obvious that 
@=2”, p($)=p, 3 possesses property C(q, I), but it does not possess 
property B. 

(3. 4) shows that we have to suppose q 5 2”, and since here we do 
not want to discuss the difficulties caused by the continuum problem, we are 
going to suppose q Sp”. 

It results that the best-possible generalization of Theorem 1 would be 
the following : 

(0) Mb P, q, r) - B f or every m, provided q‘;=p’, p~bt,, rep. 

We can prove this only with the stronger assumption r+<p (see 
Theorem 4) or with the restriction that m is not too large (see Theorem 5). 
Both proofs use (*). 

The simplest unsolved problem here is 

PROBLEM 2. M(N,+l, b&,2, NC,)- B? 
As to the symbol-II the problems are more ramified. First we have to dis- 

cuss the case m up which leads to some interesting result too. This will be done 
in Section 4. (3.2) shows that we have to suppose s z p. In Section 4 we 
are going to prove that at least in the case p 2 K,, m 2 p we may suppose 
r+ zs. 

So the best-possible refinement of the conjecture (0) would be the 
following: 

(00) M(m, p, r) 4 B(r’) for every m z p z No, provided r <p. 

Now we have to distinguish two cases: 
(i) If r is finite, then (00) is false. However, it is always true for N’,, instead 

of r’ and using (8) corresponding to every m, p and r we can determine 
the least s (eventually finite) for which M(m,p, r)-+ B(s) is true. These 
results will be proved in Section 7. As a consequence of these results we 
prove the topological theorem mentioned in the introduction (in Section 8). 
There we state many conjectures which all would have been consequences 
of %-compactness of the topological product of & Lindelijf spaces - now 
disproved - and which we can not disprove with our method. 

(ii) If r is infinite, (00) is very likely true, however, we can prove it 
- using (*) - only with similar restrictions as in the case of symbol-l, 
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namely we can prove that 

M(m,p,r)+B(r+) for m~p>r>&, 

provided m is not too large (see Theorem 7) and we can prove that 

M(m, p, r) -+ B(r+ +) for every m 2 p> r+ > K, 

(see Theorem 6). 
The simplest unsolved problems here are 

PROBLEM 3. 

a) M(&+I, &+I, MO) + B(NJ ? 
b) M(N,+l, K,, K,) - B(R)? 
c) M(Kw+l, K,, N,) -+ B(%)? 

The results on (0) and (00) will be proved in Section 6. All the positive 
results concerning the case m>p will be proved with the method of MILLER’S 

theorem, and the proof runs always by induction on m. That is why we 
need a generalization of the induction process used in [l]. This will be done 
in Section 5 and as a corollary of it we obtain all the positive theorems 
(Theorems 4-9) already mentioned. 

In Section 9 we deal with the case of finite sets (PC&) and with some 
questions related to property B. 

4. The symbol-II in the cases m s p (p 2 NJ. The folio wing theorems 
of A. TARSKI will play an important role in our investigations: 

z 
(*) LEMMA 1. Let S be a set, 3 a famiiy such thaf (3) C S, S= K,, 
ISilz Kg. Then 

a) $5 R,, provided d possesses properly C@Ltl, 8~) and cf(cc)#cj($). 

b) $5 K,, provided 8J possesses property C(kl, r) for an r< Kg.’ 

Note that in TARSKI’S paper the theorems are proved under the stronger 
conditions that $ possesses the properties C(2, Ka) and C(2, r), respectively, 
however, the proofs can be carried out in the same way for our case too. 

LEMMA 2. Lef S be a set, d a family such that (3) C S, S = K,, 1s 1 2 r 
where r is finite. Then 3 I N,, provided 3 possesses property C(&,1, r). 

Lemma 2 is a corollary of the fact that [S]“=H, for every finite r. 
Note that the proof of Lemma 2 does not make use of (*). 

(4. 1) M(m, p, r) + B(m’) for every m, p, r. 

M(m,p, r)-,+B(m) if r>p and p 2 K, (K, 5 m up). 

3 See [2], Theorem 5, I, p. 211 and Corollary 6, p. 213 for a) and b), respxtively. 
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PROOF, The first statement is trivial, the second is to be seen quite 
similarly to (3. 3). 

REMARK. if m is finite, m 2 2, then M(m,p,r)-B(m) and 
M(m, p, r)-i- B(m-I) is true under the same conditions for p, r respectively. 

(4.1) shows that we may always suppose rsp. 

(4.2) M(m,h‘,,r)-+B(2) for every a if m<K, and r<K,. If r-k, 
then the same is true for m < Kcfca,a 

PROOF. Let 3 be a family (p(S) = K,, $ = m) which possesses pro- 
perty C(2, r). It is obvious that the set F- U F’ is of power X, and so 

F'E$;, F'#F 

it is non-empty for an arbitrary F c b. Let xs be an element of this set and put 
B= {x~}~&. We have Bn== I for every F c 3, hence d possesses pro- 
perty B(2). 

(4.3) M(Kcf(,, , Ma, Ka) -+ B(M,f(,)) for every a. 
PROOF. Let 3 be a family such that ~(3) = N,, 3 = K,n,,, and suppose 

that 3 possesses property C(2, K,). Let b={FV},,,,C,C, be a well-ordering of 3. 
The set F,,-- U FP is of power M, for every Y < mcfca). Let x,, be an 

U.-v 
element of it. 

Put B = {xw}r+.\,). It is obvious that B II F,#O for every I’< rz~~+) 

and B n F, c Nrfl,) for every ~<o~~(~), since if v’> Y, then x,&F,.. It follows 
that d possesses property B(Ncfc,,). 

Now we show that (4. 2) is best-possible in “s”, i. e. 

(4. 4) M&W, K,, &)+B(s) if SC &w- 
PROOF. We are going to suppose that ct is of the second kind. If T( is 

of the first kind, the statement can be proved quite similarly. Let S be a set 
of power K, and let S= {x~}~<~, be a well-ordering of type mea of S. Let 
{~,,$V.W~fl~j be a monotone increasing sequence of type o+) of ordinal 
numbers less than CL cofinal with cc. Put S,, = {x~},v<~,,, for every V< CQ~). 
Obviously, one can define the sequences {F~},<,~r,,aj, {Fz}y.-Wtf(uj of type 
cocf(a) of subsets of S in such a way that - if we put &Y= {F,$, -Ocfaj u 
u {F$ acfia), then d possesses property C(2, K,) - and that the following 
conditions hold: 

(1) Fi=E=N, for v<oQ(~), 
(2) S,C Fi for Y < OQ(~~, 
(3) Fz n Fzy= 0 for V# Y’, Y, v’< o.Q(~). 
Then ~(3”) = K, by (1) and $= Q,. Suppose that the set B inter- 

sects every set F of the family 8. Then Bg K,R,, by (3), hence if s < K,f(,), 
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there is a B'C B such that B’= s and there is a .v~v,< u+) such that B’S&. 
But this means by (2) that BniUzs and thus B does not possess pro- 
w@ JW. 

It results from (4. l), (4.2), (4. 3) and (4.4) that to complete the discus- 
sion of the case M 5;~ (p r K,) we have to determine the value of symbol-II 
in the following cases: 

A) m-p, r<p (p z%), 
B) m = KB, p = K,, r = K, where cf(cf) < $5 cz. 
To obtain complete results we have to assume (*) in both cases. In the 

case A) there remains an unsolved problem even if we assume (*). 
First we prove the following negative result concerning A): 

(*) (4.5) M(N,, K,, r)-i+B(r) if r<K,. 

(If r is finite, the assumption (*) can be omitted.) 

PROOF. Let $*, 8, be families satisfying the following conditions: 

(4.5. 1) Fl k r+, f$;, = K,, 

(4.5. 2) p(sQJb,)-K,, 

(4.5. 3) Fn F'=O for every pair F,F' C&T1 US”,, F=+F', 

Put (3,) =&. By Zorn’s lemma there exists a maximal system $ of 
subsets of S1 satisfying the following conditions: 

(4.5. 4) Xn F= 1 for every Xc8, Ff ST,, 
~- 
X n Y< r for every pair X, Y c 8, X# Y. 

From (4.5. 1) and (4.5.4) we get 

(4.5. 5) n-r+ for every Xc 8 
and using the maximality of 8 we obtain: 

(4.5.6) If the set B' intersects every set F of sl, then there exists an 
element X0 of 8 such that E’?i% 2 r. 

On the other hand, using Lemmas 1 and 2 we get from (4.5. l), (4.5.2) 
and (4.5.4) that 
(4.5.7) Z=N,. 

It follows that there exists a one-to-one mapping h(X) which maps 
8 onto &. Put 8; = {h(X) u X}sEs and define 8 as follows: 

,$:$lu$;. 

Since rf 5 N, by the assumption, by (4.5.2) and (4.5.5) we have 
p(+==K,. By (4.5.2) and (4.5.4) d possesses property C(2, r) and by 
(4.5.1) and (4. 5.7) 3 = Ka- 
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We have to prove that 8 does not possess property B(r), But if the 
set B intersects every set F of 3, then it has a subset B’ satisfying the 
condition of (4.5. 6), hence B n X0 2 r for an X0 c 8 and therefore B n F. zz r 
for F,= h(XO) u X0, hence for an FO c 3. Thus 3 does not possess pro- 
perty B(r). 

REMARK. We have proved the following somewhat more general state- 
ment: The family 3 construcfed above is such that each set which infersects 
every element of iFI has to intersect an element of 33 in at least r points. 

Now we need some preliminary definitions. 

DEF. (4.6) Let 3 be an arbitrary family and let S be a set such that 
($)G S. For an arbitrary subset X of S and for an arbitrary cardinal number 
t we define the subfamily 9(X, t, 3) as follows: 

!$(X,t,b)={F:FGi.FnXz t}. 

DEF. (4.7) Let 3 and S have the same meaning as in (4.6). For an 
arbitrary XE S we define the family 31X as follows: 

(Note that 31X is not necessarily a subfamily of 3.) 
The following assertions are immediate consequences of the above 

definitions. 

(4. 8. 1) Let q, r be arbitrary. The families 9(X, 5, %) and $1 X possess 
property C(q, r), provided the same holds for 3. 

(4.8.2) &{X,t, T)lXiSt. 

(4.8.3) if the family 3 possesses property C(q, r) and t 2 r, then 

ii$ymq 5 q--GmQT. 

Now we prove the following positive theorem concerning A): 

(*) (4.9) Suppose r < M,. Then M(K,, K,, r) --, B(r+), provided the following 
condition does not hold: 

(v) There exist ordinal numbers ,& y such that cc=P+ 1, r=KY, cf(@)= 
= cf(y) and y<ia. 

(If r is finite, the assumption (*) can be omitted.) 

PROOF. Let 3 be a family (p(B) = Ns, B= 8,) which possesses pro- 
perty C(2, r). Put S=(3). Then S= K,. Let S={X,,}~<~~ and 3={FP},Ui,, 
be well-orderings of type cva of the set S and of the family 3, respectively. 
We may suppose that r+<K,, for if not, then r+= K, is regular and the 
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theorem follows from (4. 3), since the symbol-II is decreasing in r by (3. 1). 
Now we define a subsequence {x,,~}~~:~~ of S by induction on @ as follows: 

Let xsz, be an arbitrary element of FO and put FO= Fp,,. Suppose that 
.the elements x~,, are already defined for every cr<e, for a g< wo. Put 

(4.9. 1) s, = (x9,) SC g , qq = q (S,, r, 3). 

It is obvious that ?$, z CC K, and by (4.8.3) ?&, 5 we. 
But C& 1 Se C@(S,), thus using (*) we get 

“(4.9.2) G&N, except if Se+ = !,+ = N,. 

Put c=& and suppose j’+ I= CL. Then Se=&, i$eiSej sr (by 4.8.2). 
Using Lemmas 1 and 2 for the family qQiSs, we get 

(4. 9.3) 5$5 m 5 Np < K, except if r = X,, , cf(i;3) = c&). 

Thus it results from (4. 9.2) and (4.9. 3) and from the assumption that 

v) does not hold that sp < K,. Let ,u? be the least ordinal number ,LA for which 

S, n Fp = 0.’ 

It is obvious that &,c&~, and so the set 

Fu9 - C$& = Fue-F v PIP, n 6) 
I-I % 

- --.-- 
is of power K,, since FuO = K, and U (F,, n Fp) s r.0~ K,. , qdjp - 

Thus there exists a Y such that xy C F+--- ((l&J u S?)). 
Let %jo be the least ‘V of this kind. Thus x,,,, FuO are defined for every . 

e< wa and it follows by induction on \o that 

(4.9.4) x~, C F,,,, x,,$(Ejp) and x,,#x%,,, ,+.#/Q for every o<<<r~~. , 

Put B = {xVO}Pccda. Now we prove 

(4,9.5) BnFg#O for every ,~<a. 

For if not, then there exists a least ,u” of this kind, and by (4.9.4) 
there is a ,H~>,cL” in contradiction to the definition of &. . 

(4.9.6) BnFt,cr’ for every p c a),. 

c If such a ,U does not exist, then we slop with the construction and cjbviously one 
can prove in the same way that S, assures property B(r*) as we shall prove it later for B. 
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For if not, then there exists a +“<occ, a subset B’cB and an x7,$,, c B 

such that B”= r, B’ + {x~+} E F,, and cr<eO for every x,,~ f B’, and this 
obviously contradicts (4.9.4), since then F,, C G,,. 

(4,9,5) and (4.9.6) just mean that the family 3 possesses property B(r+). 

REMARK. As we have already mentioned in Problem 3a) - for a special 
case - we do not know whether M(&+I, Np+l, K,) --f B(K,+J is true or not 
if @ and 7 satisfy the assumption (v), i. e. if cf(,$) = cf(;y) and ;‘< 3. 

Now we need the following 

(*) LEM,MA 3. Let S be u set, S= KaLl, and suppose that K, is regular. 
Then there exists a system S of subsets of S satisfying the following conditions: 

~ p(S)=Ka, $ possesses property C(2, K,) and for an arbitrary SC S 
(s’= h‘,+l) there exists an X C S such thaf XES’. 

Lemma 3 is a theorem of A. HAJNAL.~ 
Now turning to the case B) we are going to prove that if HE is singular 

and cf(rf) ~$5 CC, ihen the trivial result M(Kg, h’,, ha,) ---, B(H& (see (4. 1)) 
is best-possible, i. e. 

t*> (4.10) M(&, K,,h’,)-I-B(&) if cf(cc)<,3ic:. 

We are going to prove this only for the case /3= CC, the proof can be 
carried out similarly in the other cases too.’ 

Proof of the case $== CL. Let ;TI be a family satisfying the following 
conditions: 

(4.10. 1) $I = RCrCatil, p(S,) = h*, and F n F’= 0 for every F, F’ < :sl, 
F+ F’. 

v ’ d4 being regular, we can apply Lemma 3 with ZI instead of S and 
we obtain that there exists a system S of subfamilies % of ZI satisfying the 
following conditions : 

(4, 10. 2) S-= &Au)+1 ) p(S) = Kc+,, S possesses property C(2, MC& = 
and if 3’ is a subfamily of <$I such that 8’= ‘&)+I, then there exists an 
T t: S for which % CZ’. 

Let S = {‘T,U}p~w,f~a~+l and SI = {F~~-tc:m,fb~+l be well-orderings of type 
+ia)il of & and SI;, respectively. Let further {~l~,},.~~~~~~~) be a monotone 
increasing sequence of type 03~~~~) of ordinal numbers less than ct cofinal with cc. 

7 See [6J, Theorem 9. 
S We mention that if cf(a)< cf(p) (especially, if p is of the first kind), then the 

theorem is easy and can be proved without using (*). But for the cases cf@) kcf(a) we have 
to use the same complicated proof as for the case /I =a. It is possible that a simpler 
proof can be constructed in this case too, but we were unsuccessful in doing this. 

7 ACta Mathematics XII/I--2 
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By (4. 10.2) %,CSF, and “x, = KCf(,, for every ,CL < c+(~,M. Let 
Y,U = {F~}y~:w,.~C,r be a well-ordering of type mcfta) of %+. 

The set Pi - being an element of 3X - is of power K,, and so it 
can be split into the sum of K, disjoint subsets of power &,,, that means: 
there exists a sequence {F:~J)&~~ of type oa of subsets of F':: satisfying 
the following conditions: 

(4. 10.3) F:(y)= Ma, for every Y<w~, FiciJ n F&) =0 for every 

yl,y2c%, y,#y2, and Fi = U F,!:(y) where y < w~~(~)+~, V< UA.~~~) are 
arbitrary. 

“,‘Oa 

Now, corresponding to every ,c’ <u+Q,)+~ we define a family Z?+ as 
follows. First put F’(y) =V~l~,~C~%(;~), and then put &,U = {Fp~/)},,,c,a. 

We have, for every 1” -C ~~Cf(a)il, 

In fact, the second statement follows from (4.10.1) and (4. 10.3) the 
first one is a corollary of it, while the third and the fourth ones are conse- 
quences of (4.10.3), since 

Now we put 
gF = 3* u u &&. 

+c%f(a)il 
We have 

(4. 10. 5) p(b)=% 
since ~(8,) =p(&J = N, for ,M==cQ+)+~ by (4. 10. 1) and (4. 10.4). 

Taking into consideration that IS, is singular and therefore cf(c~> + 1 <c, 
we get from (4. 10. 1) and (4. 10.4) 

D 
(4. 10.6) 3 = $14 2 &.,u = Kcf@)+l + b&z)+1 - K, = Ka. 

FL--Jcf@)tl 

We are going to prove that 
(4. 10.7) $ possesses property C(2,&). 
Let F, F' be two elements of 3 such that F# F'. 

- To see that F n F <K,, we distinguish four cases: (i) F,F' C 8l, 
(ii) FE $,, F' C S+, (iii) F < 8&, F’ c &,, (iiii) F C &+, F' F t%,u~ for 
some ;l. + !I’. 

In the cases (i) and (iii) F and F’ are disjoint by (4. 10.1) and (4. 10.4), 
respectively. If (ii) holds, then - by (4. 10.3) - either F n F' =O if F $ %/,, 
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or if Ff?&, then F = F$ for a Y < mcfCa) and F’= F”(y) for a 7~ ma and 
F=F=((;I)=-N,,<K,. 

Suppose now that (iiii) holds. By (4. 10.2) we have %,fi n ‘%$ < KC+), 
since ,u+ ,u’. It is obvious that (3)=, U F,, and so Fn F’,:,U (F, n (Fn F’)) 

~*:~%f(a)+l ’ cf(a)+l 

but either F, n F br F, n F’ is empty if F,@ %+ n C&, hence 

Taking into consideration that by (4. 10.3) F, n F< K,, it results that 
Fn F’<K, in this case too. 

It remains to prove that 

(4.10.8) $7 does not possess property B(#,). 

Let B be a set such that B n F< K, for every F < 9’. Then, especially, 
corresponding to every z< mcf(a)+l there exists a subscript V(T) < OQ(~) such that 

It results that there exists a subfamily 9’ of $I and an ordinal number 
t’,< woefCa) such that 8’= KrfCa)il and B n F,< Ha,,0 for every F, C 6’. But, by 
(4. 10. 2), then there exists a ,LC~) < ~~~~~~~~ such that %$, CF. Thus we have 
F? n B c K,,,. for every Y < rifle), and so B rl (9&J 5 K,~c~, v K,,,, < N,, . But by 
(4.10.4) %z,,U,, consists of K, disjoint subsets of (9&J, consequently there is 
an F< %,,G$ such that 

B n F-= 0. 

Thus by (4, 10.5)-(4.10.8) the case 8= cz of (4. 10) is proved. 
From (4.3) and (4. 10) we obtain the following 

(*> COROLLARY. Suppose p is infinite. Then M(p, p,p) -B(p) holds if and 
only if p is a regular cardinal number. 

This should be compared with BERNSTEIN’S theorem cited as Theorem 2 
in Section 3. 

REMARK. After (3. 1) we have stated without proof that M(m,p, r)-B(s) 
is not monotone increasing in p. This can be seen e. g. by the following 
examples : 

M (K,, Ho, K,) ----+ B(N,) holds by (3.2) but 
M(K,, K,, K,)--:- B(R) by (4.1); or 

M(Ms, Ku, K,) - B(k) by (3.2) but 

(*) M(&, K,, NJ-I-B@,) by Theorem 3 and (3.2) and 
(*) M(Hs, M,, &)-I+ B(K) by (4.5). 
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However, every example which disproves the monotonicity in question is 
such that s>p. Under the condition s zp - and these are the only genuine 
cases - the monotonicity seems to hold. Suppose namely that M(m, p, r)+ B(s) 
is true, sop, and for the sake of simplicity suppose further that m,p, r, s SK,, 
and suppose (*), 

Distinguish three cases: (i) p< r, (ii) p = r, (iii) p>r. If (i) holds, then 
by (3. 1) and (4. 1) m’ z.s, hence again by (3. 1) and (4. 1) M(m,p’, r)-B(s) 
is true for every p‘>p. 

If (ii) holds, then m ~:p by Theorem 3 and by (3.2), and so p’>m, r 
for every p’>p, hence M(m,p’, r) -+ B(s) is true by (4.2). 

If (iii) holds, then the implication is again trivial if mzp, and if m>p, 
then by Theorem 6 which will be proved in Section 6 M(m,p’,r)-+B(p+) 
is true for every p’>p. 

By a slight modification of the proof of Theorem 6 one can obtain the 
following theorem : 

(*) If 3 is a family, p(3) ==p’, 3 = m and 3 possesses property C(2, r), 
then there exists a set B such that B n F=p for every FE 3, provided that 
the above-mentioned inequalities hold for the cardinal numbers in question. 

Put $‘=== {B n F},+ It is obvious that 3 possesses property B(s), 
provided the same holds for Z’, but p(S) =p, 3’ s m and 3” possesses 
property C(2, r), hence M(m,p, r)+ B(s) implies M(m,p’, r)+B(s) in this 
case too. 

It is possible that one can find a simpler proof for the monotonicity 
which does not use the hypothesis (*), but we were unsuccessful in doing this. 

5. Generalization of Miller’s inductive construction. Let (3) be 
a family and S a set, (3)s S. 

DEF. (5. 1) Let 3’ be a subfamily of d and put S’==($‘). $’ is said 
to be closed in $ with respect to the cardinal number t (or briefly f-closed 
in &F) if F c ~7 and Fng t implies that Fc 3;‘. 

It is obvious that if 3;’ is an arbitrary subfamily of 3, then (the inter- 
section of any number of t-closed subfamilies being t-closed) for every t there 
exists a minimal t-closed subfamily of 3 containing 3’. However, we need 
concrete constructions for t-closed families containing Z’. 

DEF. (5.2) We define the t, E’ closure of Z’ in 3;: Clos (a,, 3, t; E) for 
every 8. First we define a sequence ($,)l~c~COE of type o>, of subfamilies of d by 
induction on 1’ as follows: 

Put @=a;’ and S, = (Q. Suppose that the families Q as well as the 
sets S, are already defined for every ;t < I’ for a V< cos. 
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Put SZ=== U S,, $, = q(S?:, f, 3) (where q is the function defined in 
P<V 

(4.6)), and S, = ($&). 
Thus && is defined for every Y<w~. Now we put 

Clos (F, SF, t, E) +J> q*,. 
‘e 

As an immediate consequence of the definition we get that 

(Clos (Z’, 3, f, 8)) -,,ytijSV and 3’C Clos (a, 3, t, E). 
B 

We have: 

(5.3) Clos (3’, 3, f, E) is f-closed for every t < $&f(C) .’ 

PROOF. Let F be an element of B such that Fn(m’TS, t, E)) 2 t. 
Then Fn S.&Z f for a suitable v~<w, and thus F C $,,,!G Clos (%‘, 3, f, a). 

In what follows in this section let 3 be a fixed family, (3) = S. Suppose 
that p(3) =p, 3 = m, 8 possesses property C(q, r), where the cardinal 
numbers m,p, q, r, s and f satisfy the following inequalities: 

(“1 m>p,pSK,, 2sqsp+, r<p, r+ Ssrp, rS t<p. 

Every statement proved in this section depends on the assumption (“). 
We are going to use the notations p = &, m = Kg, r = K,, s = Ka alter- 
natively (provided r and s are infinite). 

DEF. (5.4) Let z(t) denote the index of the least K greater than t. 

(E(t) =0 if t is finite and &t,= f+ if t is infinite.) This means that Ksctj 
is always regular. Put briefly Clos ($7, i) for Clos (GYt F, t, F(t)). 

We need the following 

(+) LEMMA 4. Let 67 be a subfamily of 3, $‘= m’ & p. Then Clos($‘, f) = m’, 
provided one of the following conditivns (CC) and (cN~) holds: 

(a) r= f and the following condition does not hold: 
(vv) There exist ordinal numbers p’ and ;’ such that m*= $I,, r = K, 

and cf(,s’) = cf (7) 
(cm) r < t. 

(Note that in case r is finite, the hypothesis (*) can be omitted.) 

PROOF. Let $, denote the families defined in (5.2) corresponding to 
the given $‘, t and E(t). First we are going to prove by induction on 17 that 

(1) Z&=m’ L and S,, z m’ for every v < (o~(~,. 

3 It would be easy to see that (5.3) holds under more general conditions too, 
but we do not need this. E.g., it is true that for every f either Clos ($‘, L$, t, 0) or 
Clos ($‘, 3, t, 1) is f-closed. 
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This is true for v = 0, since go= $‘= m’ by the assumption and E 
s = (E/J sp.m’=m’. Suppose that the theorem is proved for every ,u< ‘I! 
where v < ~~((4 j 

Then E 5 2 m’= m’%. But by (5.4) ‘i; < K,].f and therefore 
,U<Y 

S;sm’.&~t=m’, since t<psm’. 
Now we obtain from (4.8. I), (4. 8.2), (4.8.3) and (5.2) that 

z@q-.~, $&s; p ossesses property C(q, r) and I$,!S,tl> 5. On the other 
hand, we have q s cm’)+, since qsp+ and psm’. 

Hence by Lemmas l- and 2 each of the conditions (rz) and (acr) implies 
that ws; i m’. Consequently, we have e,, sp.m’=m’, since q- sp if q sp+. 
Thus’ TV= m’, since qW contains qO, and similarly as for the case Y = 0 we 
obtain that S,r m’, and (1) is proved. 

Using that t<p, ps N, implies K,(ozp, we get from. (1) 

m’s C~s~~~ 2 m’sm’.p=m’ 
l’C:COs(f) 

and Lemma 4 is proved. 
Let now 3 = {Fp.}scwB be a well-ordering of type mB of the family 3’. 
Now we are going to define the sequences {3%(t)}giy, {S,(t)},,, of 

type y of subfamilies of d as well as the sequence {S,(t)},,, of subsets of 
S for a 9 5~~ by induction on c~ as follows: 

DEF, (5.5) Put @1;(t) =r; {F,},,,,, s,(t) = Clos (L%(t), t>, so(t) = (al(f)). 

Suppose that the families Z;,(t), b7Fw!(t) and the sets S,,(1) are already 
defined for every ~T’<(T. Put 

If there exists an index Q cog such that F,@,*(t), then put Q~= Q for the 
Ieast 9 of this kind, if not, then put (T= sp. 

If g, exists, then put 

a;(t) = E-c(t) u {iq,}, LFm(f) = Clos (&f(t), t), s,(r) = (%&)). 

Finally, if pV is defined for every o< w@, then put y; = <tip. 
(5.6) As’ an immediate consequence of the definition we obtain the 

following results: 

(5. 6. 1) 

(5.6.2) 

(5.6. 3) 

(5.6.4) 

S;,(f) c ~;~(t)c~~,(t) CSZ(t) for every CJ’< a< 9, 

S+(t) C%(t) C S,(f) for erery o’< 0 <q, 

&Tr(t) is t-closed in ;F for every n< y’ by (5.3) and (5.4). 



ON A PROPERTY OF FAMILIES OF SETS 103 

DEF. (5. 7) Put X,(~)=~Ti-;,(~)--~~(~) for every o<y. 
By (5.5) and (5.6. 1) we have 

(5.7. 1) B = u =x,(t), 

and by (5.6.2) 
UC tp 

(5.7.2) 3&(f) n ‘X,,(t) = 0 for every o’< a< SF. 

Now we prove the following lemma: 
(5.8) Suppose that Fc C X,(t) for some p c wB, o<lp. Then ~~ 
(P) F,:(q S t, and if t is finite, then 

(#) Fe;(t) < t. 

PROOF. First of all - S,s(t) being t-closed by (5.6.4) - we may 
suppose F? n 2&(t) c t for every @‘CO, for if not, then by the definition (5. 1) 
FP belongs to SC,(t) in contradiction to (5.7). 

We distinguish two cases: (i) U= CT,+ 1 for a ~~<a, (ii) CT is of the 
second kind. 

(i) By (5. 5) and (5.63) we have So=&, hence (I@?) holds for 
every t. 

(ii) Let w, be the least ordinal number cofinal with CT and let {Q*~}$~, wT 
be a monotone increasing sequence of ordinal numbers less than CT of type 
oz cofinal with CT. We distinguish again two cases: (j) N,s t, (jj) %> t. 

(j) We have by (5.5) and (5.6.3) 

at) =oy<?, (0 = u su, (0. 
F.-wC 

-~ 
Hence FFST) 5 2 S,, n F, 5 t.& = t and thus (p) holds. 

?j<Wa 
(jj) Using again S(f) =,~tiS,7(f), we obtain that (&8) holds, for if not, 

then FQ n S:(t) contains a subset ‘of power t which - K, being regular - 
is contained already in a set S,, for an q. <z. 

If t is finite, then either (i) or (jj) holds for it, and therefore if t is 
finite, then (a,) is true. 

DEF. (5.9) By (5.7. I) and (5.7. 2) cnrresponding to every Q < OJ~ there 
exists exactly one o<yl such that F? c Y,,(t). Put &=F,---S(f) for this (T 
and put further go(t) = {~~J,E~~,,I. Put finally @t)= (L%![T(t)). 

We need the following results: 
It results from the assumption ~($8) =p> t by (5.8) and (5.9) that 
(5. 10. 1) p(%,(t))==p f or every o< y, and it is obvious from (5.9) that 
(5. 10.2) the family T&(t) possesses property C(q, r) for every ocsp. 
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(5. 10.3) Suppose Fq C 2&(t). Then 

W F, yU,Su, VI 5 f and the equality is excluded if t is finite, and 

Qy) FY n ,& (t) - 0 for every rr”> 0. 

PROOF. (y) By the definitions (5. 7) and (5.9) $(t)G &(f)ZS; (f) --= ___ 
for every o’<o, hence by (5.8) we get FQ n U &(t)zF, n S:(t) 5 f (or <t 

U’CU 
if t is finite). 

(y”/) It is enough to se? that FQ,n pPll = 0 for every F??, f ‘%~~,(r). But 
F,ES,(t)GS$(t), and so by (5.9) F,,, n F, C F% n S$ = 0. 

Now we prove the following 

LEMMA 5. Suppose that the families %c(t) possess property B(s) for 
every 0~ 40. Then the family S possesses property B(t+ + s), and if f is finite, 
then it possesses properfy B((t-I) + s) too. 

PROOF. By the assumption for every n< y there exists a set B, such 
that B,C:&(t) and 1 z B, n Fq <s for every F? c 2,(f). 

Put B= IJ B,. By (5.7. 1) for every Q < c+ there exists a 0~9 such 
u:p 

that Fe E X,(f). Then FY C %(f), F?:,C Fg, by (5.9), and B, intersects F0 by 
the assumption, hence we get 

(1) Bn F,#O for every ~<cQ. 

Now we are going to prove that 

(2) BnF,< t’ j-s for every p<rog, 

Let now oe be the uniquely determined ordinal number for which F, < Z,(t). 

By the definition of B we have 

(4 
e----- 
BnF,s U(&nF,)+BgonnF,+ U(&nF,). 

“‘de “>Ue 

Taking into consideration that B,&&(t), we obtain from (5. 10.3) that - 
m(BDti-c)s U (&(Q n F,) 5 f and U (B, n F,)==O. On the other hand, 
0; CT0 gr’. Lro u/~o‘o 
it r&ults from i5.9) that s,,{f) n Fe&F? for every Fe C ?L&f), hence --__. -.~ 
B n FP = gVx C.S. It follows that m? < t+ + s for every g < 020. (1) and 
(2) mean th‘at $ possesses property B(t+ is). Suppose now that t is finite. 
The formula (x) holds in this case too. We get from (5. 10. 3) that the first 
cardinal number on the right-hand side is less than t and the third one is 0, 
while the second is by the assumption less than s in this case too. Now if 
s is infinite, then the sum is less than s, hence less than (f-l) fs. If s is 
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finite, then the first summand being less than f is at most f-l, hence the 
sum is less than (!--1)f.s in this case too. It results from (1) that if t is 
finite, then 3 possesses property B((t-1)$-s). 

LEMMA 6. The family 3 possesses property B, provided the same holds 
for the families gr(t) for every (T < y. 

PROOF. Lemma 6 is to be seen quite similarly Jo Lemma 5. Let &C&(f) 
denote the sets satisfying the condition B, n F,#O, FP SjE B, for every 
p? C %&). Put B= U B,. The proof of the fact that B intersects every Fe 

u<lp 
is the same as in Lemma 5. Let oc, denote, as before, the uniquely determined 
u for which F@ c g,(t). It results from the definition (5.9) and from (5. 10. 3) 
that B n ?? = B”? n pY, hence F? # B n FY, since $? Cl: B,?, and thus Fi 2,: B, 
therefore Fsl G;E B for every e <5p, 

For the sake of brevity we introduce the following notations : 

DEF. (5. 11) The cardinal number m is said to possess property T(p, r) 
if there exists an m’ (p 5 m’cm) such that m’ satisfies the formula (vv) of 
Lemma 4, i. e. if there exist ordinal numbers $’ and 7 such that 

m’= Kg,, r = K,; and cf (p’) = cf (y). 

Quite similarly, p is said to possess property Q(r) if p satisfies the 

formula (v) of (4.9), i. e. if there exist ordinal numbers a, and ;’ such that 

p-=Ka=b&, r=K,, cf (cr,) = cf (7) and y i CL, . 

Now we are going to prove 

(*) LEMMA 7. p@,(f)) =p, the families X,(1’) possess property C(q, r) and 

2,(t) i m for every a<~, provided one of the conditions (d) and (M) holds: 

(8) r = f and m does not possess property T(p, r). 

(ddj r< t. 

(If f is finite, the hypothesis (*) is not used.) 

PROOF. The first two statements were proved in (5. 10. 1) and (5. 10.2). 
We have to prove the third one. It is obvious from the definitions (5.7) and 

(5.9) that %;e,(5 SW) z$i(?j. We prove by induction on o that SU(t) s 
ipea-+-l<nr for every 0<4p. 

By the definition (5.5) Z&(t)=& =p and, since by the assumption 
either r< f or m possesses property T(p, r), by Lemma 4 $7{,(t) = 
= Clos (s;(t), f) = p. 
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Suppose that we have $FFP(t)5pP~‘+1 for every u’<o for a O<a<y. 
Then by (5.5) 

~&1~&(t)~ Cp.o’fl=p.o. 
CT’-: v u’-<u 

- ~ -- 
Now Z;(t)=$$@+l sp.o+l. 

We have sps wp from the definition (5.5), and therefore p. G+ 1 cm, 
hence we may apply Lemma 4 again to S,(t) = Clos (S-(t), t) and we obtain 
dv(f) spa o-j- 1, thus this statement is proved for every o<sp and Lemma 7 
is proved. -- 

Note that from the statement m) up- a+ 1 ((I <sp) it results that 
q =og, but we do not use this fact. 

Finally, to have a view of our results we need the following quite evident 

LEMMA 8, The least cardinal number which possesses property T(K,, K,) 
(CC > 7) is a + 1 if cf(a) = cf (y), and it is KafwCfiy+ if cf (cc) # cf(y). 

PROOF, By the definition (5. 11) we have to find the least PI for which 
there exists a $’ such that cc 5 8’~ ,8, and cf(@‘)=cf(~). It is obvious that 
r:l =i;j’+ 1 for the least ordinal number p’ satisfying this condition, and 
$’ = u if cf (a) = cf (r). 

Suppose now cf(e) #cf(r). rj” >ci has the form /~“=a+,,, and 
cf (e + P”) = cfC/> can hold only if 8” is of the second kind. But then 
cf(u $ ,8”) = cj(,8”) and the least ordinal number 8” of the second kind 
satisfying cf (a”) = cf (y) is o~~(~cY). 

Let for the sake of brevity ~(a, 7) denote the index of the least cardi- 
nal number which possesses property T(K,, K,). 

EXAMPLES. 

z(n,O)=w+l, z(w,O)=w+l, z(o+l,O)=co~2+1; 

or more generally 

z(cc + ,u, r) = a + oy + 1 for 1 z ,u z u+ if 75 cc and UA, is regular. 

6. Proof of the results concerning the conjectures (0) and (00). 

(*) THEOREM 4. Suppose p> No, 21qzp+ and t-+<p. Then for every 
cardinal number m. 

Wm,p, 4, r)--, B. 

(Note that if r is finite, the hypothesis (*) is not used.) 

PROOF. For m 5p the theorem follows from Theorem 2 (BERNSTEIN’S 
theorem) if we use that symbol-I is decreasing in m (by (3. I)). We prove 



ON A PROPERTY OF FAMlLlES OF SETS 107 

it by induction on m for every m >p. Suppose that the theorem is true for 
every m’ < ma Let now 3 be a family (p(3) =p, S=m) which possesses 
property W, f-j. 

Put t =r+. Then the conditions (“) are satisfied for the cardinal num- 
bers in question and r< f. Hence we can carry out the construction described 
in Section 5 and we can apply Lemma 7. It results that the families %V(f) 
possess property C(q, r), &K(t)) -p and ‘Z,(f)< m for every o< sp. Using 
the induction hypothesis we obtain that the families %(f) possess property B 
and thus by Lemma 6 the same holds for the family 8 too. Q. e. d. 

REMARK. Theorem 4 is clearly a generalization of Theorem 1 (MILLER’S 

theorem) for infinite T’S, however, it is not best-possible in r as we have 
already mentioned. It is possible that under the conditions pi N,,, q 5p+ 
the theorem holds for every r<p. We have to deal only with the case p = rf. 

Here we can prove the following 

(e) THEOREM 5. Suppose r= KY, r+=p (i. e. p=K,=K,+& 25qSp+. 
Then M(m, P, 4, r) - B holds for every m less than &fo,f(yj+~. 

PROOF. For m up the theorem is true by Theorem 2. We prove it by 
induction on m for every p< m < K~,+r,,,f~?l~+~. Suppose that it is true for every 
m’<= m for an m satisfying the above condition. Let $ be a family for which 
p(s) =p, ‘$== m and suppose that d possesses property C(q, r). Put t= r. 
The conditions (“) hold for the cardinal numbers in question, and so we can 
consider the families g&r) (u<v) defined in (5.9). Since by the assumption 
cf(~~) = cf(r+ 1) (cf(a) # cf(r)), it follows from Lemma 8 that m does not 
possess property T(p, r). It results from Lemma 7 (dd) that p@&(r)) =p, 
%(r) possesses property C(q, r) and g,(r) < m for every o< 40~ Hence by 
the induction hypothesis the families gg(r) possess property B. Consequently, 
by Lemma 6, the same is true for 3. 

REMARK. We do not know for any y whether the assumption 
m < K~,fw,f~y~+l can be omitted. We have formulated the simplest unsolved 
problem in Section 3 (see Problem 2). 

(8) THEOREM 6. Suppose p> r 2 Ni, then M(m, p, r) -+ B(r++) for every m. 

PROOF. If p= r+, then the theorem is trivially true by (3.2). Thus we 
may suppose r+<p. In the cases m<p by (4.2) we have M(m,p, r)- B(2). 

If p does not possess property Q(r), then by (4.9) M(p, p, r) - B(r+) 
holds. If p possesses property Q(r), then it obviously does not possess 

roperty Q(r+) (since if r = &,, then t-t= &+I and cf(i/) #cf(;l+ 1)). 
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It follows again from (4.9) that M(p,p, r+)--t B(r++) holds. As a conse- 
quence of (3. 1) we get that M(p, p, r) --+ B(r+) holds in every cases. Now we 
prove the theorem for m>p by induction on m as follows: 

Suppose that it is true for every m’cm. Let :F be a family 
(p(3) =p, F=m) which possesses property C(2, r). Put t =r-+. Then the 
conditions (“) hold for the cardinal numbers in question and we can 
consider the families gm(t) (o<y’). Since r<f, it results from Lemma 7 that 

p(%,(t))=p, the families ‘%?,(ll) possess property C(2, r) and %?!<rn for 
every a<~. Thus by the induction hypothesis the families gV(r) possess 
property B(r++). Applying Lemma 5 we obtain that 3 possesses property 
B(r+++ r+f), i. e. it possesses property B(r++). 

REMARK. It is obvious from (3. 1) that under the conditions of Theorem 6 
M(m, p, r) --, B(s) holds for every s = r > ++ too. In the case q= 2 Theorem 4 
is a corrollary of Theorem 6. Similarly as in the case of Theorem 4, it is 
possible that Theorem 6 holds with t-t instead of r-‘. 

(*) THEOREM 7. Suppose p > r r K,. (Put p = K, r = K, .) Suppose further 
that p does not possess property Q(r). Then 

M(mp~+B(r-) 

for every m-c K c<+o,Ayj+l, provided d(a) # cf(y). 

PROOF. For mcp the theorem is a corollary of (4.2). In the case 
m =p we get from (4.9) that M(p, p, r) ---f B(r+) holds, since the assumption 
of our theorem assures that p and r do not satisfy the formula (v) of (4.9). 

We are going to prove our theorem for m>p by induction on m as 
follows: Suppose that the theorem is true for every m’cm, for an m satis- 
fying the above condition. Let 57 be a family (p(s) =p, F==m) which 
possesses property C(2, r). Put t = r, The conditions (“) are satisfied, and 
so we can consider the families %&r). The assumption cf(ti)# cf(r) assures 
by Lemma 8 that m does not possess property T(p, r). Thus from Lemma 7 
we obtain that p($(r))=p, the families ‘Z&(r) possess property C(2, r) and 

2,(r)< m for every o< 4~. 
Thus, by the induction hypothesis, the families %Jr) possess property 

B(r*) and, consequently, by Lemma 5, the family 3 possesses B(r++r+) 
Since r is supposed to be infinite, this means that 3 possesses property 
B(F) too. 

REMARKS. If p possesses property Q(r), we do not know whether the 
theorem is true for m =p. (See the remark after (4.9) and Problem 3a),) 
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If cf(c) = cf(y), then by (4.9) the theorem is true for m =p, but we do not 
know whether it is true for m =p+ or not. The simplest unsolved problem 
here is M(KcG+~, M,, No)- B@L+I). 

Here the difficulty is essentially the same as in Problem 3b). It is 
obvious from the remark made after (4.9) that a positive solution of Prob- 
lem 3b) would imply the positive solution of the problem just stated as well 
as a positive solution of Problem 3a). 

7. The discussion of symbol-II in the cases r<Ko (pz NJ* Note 
that in the case r< H, (p Z X0) symbol-I is completely discussed by MILLER’S 
theorem. The positive theorems concerning symbol-II will be proved by 
MILLER'S method quite similarly as the theorems of Section 6. 

THEOREhl 8. a) M(Hatn, K,, r) - B((r-l)(n + 1) $2) if r is finite and 
CC is arbitrary. 

b) M(m, N,, r)-+ B(H,) for every m and CC, provided r~&.‘~ 

PROOF. a) We are going to prove the theorem by induction on n. For. 
n = 0 the theorem is proved in (4.9). Suppose that it is true for an n and 
let &Y be a family such that p(F) = K a, ‘$ = &+ii+l and suppose that it pos- 
sesses property C(2, r). It is obvious that the conditions (“) hold for the 
cardinal numbers in question and we can apply the construction of Section 5 
with t= r to our family AT?;. 

By Lemma 7, p@(r))=p, the families %V(r) p_qs~~ss property C(2, r) 
and g,(r) < !&,+I for every o<y. This means that X,(r) 5 N,,,, for every 
o<y and - using (3.1) - we get from the induction hypothesis that the 
families $$(r) possess property B((r-l)(n + 1) +2) for every n< y. 

It follows from Lemma 5 that the family 3 possesses property B((r-l)+ 
+(r--l)(n+ l)t2), i. e. it possesses property B((r-l)((n+2)+ 2). 

b) The proof can be carried out by induction on m using Lemmas 5 
and 7 quite similarly as in the previous cases, and so we omit the proof. 

RE~IARK. The hypothesis (4) is not used in the proof, since it is not 
used in the proof of Lemma 7 for the case of finite r. 

With a slight modification of our construction it would be easy to 
prove the following 

THEOREM 9. Let d be a family, p(3) = N,, AT = K‘ri,~~, and suppose that 
it possesses property C(2, r) for a finite r where cc is arbitrary. 

Let there be given a function l(F) which correlates to every F C $ an 
integer l(F). 

l[J Note that n denotes always a non-negative integer and r is supposed to be greater 
than 0. 
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Then there exists a set B such that 

EEfF= max (l(F), (r-l)@ + 1) + 1) for every F c 3. 

In particular, if f(F)= (r-l)(n + 1) + 1, then the set B intersects every F in 
exactly (r-l)(n f 1) + 1 points. 

We omit the proof. 
Now we are going to prove that Theorem 8 is best-possible in s. 

(*) THEOREM 10. a) M(N,+,,, K,, r) --:+ B((r-l)(n + 1) + 1) if r is finite and 
cc is arbifrary. 

b) M(m, &, r) -I+ B(I) if r> 1 is finite, CI: is arbitrary, m 2 &+(,, and 
I is an integer. 

PROOF. a) We have to prove that there exists a family :$ satisfying 
the following conditions: 

(1) p(S) = K,. 

(2) s= bL+,*.. 
(3) 8 possesses property C(2, r). 
(4) If for a set B B n F#O for every F c 3, fhen there exists an F0 c $ 

such that Fmn(r-l)(n+ I)+ 1. 
We are going to prove instead of this the following more general 

statement: There exists a family 3 satisfying the conditions (l), (a), (3) and 
the following condition : 

(5) There exist subfamilies >F,, ZQ of 3 such that $I u $-y ==8, 
$1 n ,%:a = 0 and if for a set B B II F# 0 for every F < sl, then there exists 
an F0 c $s such that F0 n BS (r-l)(n$ 1) + 1. 

It is obvious that (5) implies (4). 
Put (3) = S. Obviously (1) and (2) imply Fz K,+,&. Thus we have: 
(6) If there exists a family g satisfying the conditions (l), (2), (3) and 

(5), then for an arbitrary set s’ (s” = Kafll) there exists a family 8’ such that 
($‘)CS’ and p satisfies the conditions (l), (2), (3) and (5) too. 

We prove the existence of such a family 5 by induction on n. For 
n =0 the theorem is proved in (4.5) (see the remark after (4.5)).‘l Suppose 
that for an n there exists ,-a family $’ satisfying the formulas (l), (2), (3) - 
and (5). Let S be a set, S= &+,M. Then [s]““+l = Sa+il+l by the hypothesis 
(*). Let {AP}BiOa+n+l = [S]xw+vz be a well-ordering of type 0~+,~+1 of the set 

ISI * %+n 

11 In case of finite r the construction given in (4.5) can be simplified as follows: 
Suppose that sI = r instead of OF, = rf and take for S the system of all subsets X of 

- 
(sI) satisfying the condition X n F= 1 for every F c 6, instead of the system S defined 
in (4.5.4). 
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We are going to define a sequence {$p}FCwa+,i+l of type Wafnfl of 
families (,F?) ES by induction on Q as follows: 

Suppose that the families SC, are defined for a Q ~~~~~~~~ in such a 
way that (Sp,) s Kaflz for every Q’ < Q. Then A, U U ($pt) 5 KaflL, hence we 

can define a subset S, of S such that 
g’<g 

(7) S,cS--(A, ueQ$se,)) and se = NO+,. 

By the induction hypothesis and by (6) there exists a family 3 satis- 
fying the formulas (1) (2), (3) and (5) such that 

(8) (qcso; > 

let Z$* and S;* denote the families satisfying (5) instead of 8F1 and gg, 
respectively. 

Since $7, satisfies (Z), we have E$‘*s N,+, and we may suppose that 
the equality holds. Let @* = {F$“‘*},-;,,+,,, be a well-ordering of type waM, 
of the family Si’*. 

Since A? = Katn, it is obvious that there exists a system se of subsets 
of A, satisfying the following conditions: 

..~~ 
(9) s, = Ka+n, K=r-1 for every XC8 and Xn I/=0 for every 

x, Y?S,X# Y. 
Let s5, = {X,?}YTo,i,L be a well-ordering of type w~+,~ of the set se. 
We define the families $F?, $1, 3: by the following formulas: 

(10) 
and 

It is obvious that (ZJ 5. S, + A,, hence {$,J 5 Ha+,?, and so @? is de- 
fined for every Q <o~+~~+~ and the formulas (7)-(10) are satisfied for every 
Q i Wcz+v+1 . 

Put 

(11) SF= u $@, $Fl= u gF;, 3% u 3;. 
e~~~a+~z+l p’-:wa++l P~%+71+1 

Now we have to verify that d satisfies (l), (2), (3) and (5) for n + 1 
instead of n. 

~(3;) = K,, since &?FG satisfies (I), and thus it follows immediately from 
the definitions (9) (10) and (11) that 

(12) p(Z) = K,. 
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It results immediately from (7) and (8) that 

(13) (c$) n (SF:) = 0 if Q’ < g < (c),+,,+~. 

Thus, since the families $i are non-empty, we have 

(14) 3 = h’,., ,+I , 

Now we prove: 
(15) :F possesses property C(2, r). 
Let F, F’ be two distinct elements of $7’. Then Fe sY and F’ c ge8 for 

suitable Q and Q’, respectively. We distinguish two cases: (i) e = Q’, (ii) (I+ 0’. 

(i) If FC3;, F’c:Ti, then Fu < r, since by (10) :Fi = S;* and $i 
satisfies (3). 

If FE S:, , F’ c 8$, then FCS,, F’= X$ u I’$“.* for a suitable .z~<cl)~+~,, 
but by (9) X,9C A,, hence by (7) and (8) FnF’-FnE,?* and Fn F’<r 
follows again from the fact that :TG satisfies (3). 

If Fc$i, F’E$;;?,, then F=X~UFF’~*, F’ = X$ u F$“* for suitable 
II’, 11 (I’$; ,v’), respectively. Using again that A, and S, are disjoint, we get 

Fn F’ rzzz (X,? n X$) I, (F$“.* n F$‘.“). 

Thus, using that by (9) X,! n X$ = 0, we get by the same argument as above 
I that Fn F <r in this case too. 

(ii) We may suppose $<Q. If Fe St, then by (7), (8) and (10) F and 
F’ are disjoint. If Fe $, then F= X$ u I?,?,“* for a suitable 1~ and it results 
from (7) and (8) that F'n FEX?, hence by (9) F’ n Fs r-l cr. 

We have 

(16) 
$1 ” $7’ = 0. 

In fact, @* n $$‘” = 0 for every g, because 3: satisfies (5), thus it results 
from the definition (10) and e. g. from the fact that $$ satisfies (3), that 

:$t n $?$ =0 and it is obvious from (7) and (8) that bT7! n :Tq = 0 for Q’ =/= Q, 
hence ‘:FI n $T2 = 0 is true. 

Now we prove: 

(17) Suppose that for a set B Bn F#O for every F C P. 
Then there exists an F0 E Z?? such that F. n B 2 (r-l)(n +2)+ 1. 

First of all it follows from (13) that B’== &,,+I. As a corollary of this 
there exists a subscript g,, such that A,,,,E B. Since by the assumption B has 
to intersect every F f &Y’, we have that F n B# 0 for every FE siO. But by 
(10) ;T’b = 3;* and it follows from the fact that $?$,, S:“, $iS* satisfy (5), that 

there exists an index ,v,, such that B n F$‘.‘:* 2 (r-l)(n + 1) + 1. Put 
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F” = X$; ” F$$12t*. Then F" c 8”. Taking into consideration that by (7) and 
(8) Xti n F$;>"* =0 and by (9) X$ C A,,S B, .?$ = r-1, we obtain 

Thus the families 6, $I and 8* satisfy by (12) (14), (15), (16) and 
(17) the formulas (I), (2) (3) and (5) for n + 1 instead of n, and so the 
existence of such a family is proved for every n. 

b) By (3. 1) it suffices to prove that M(Ha+w, K,, r) -I+ B(I). 

Let {Sn)n<w be a sequence of disjoint sets such that s, = K,+,?. By the 
theorem just proved and by the remark (6) there exists a sequence {8fl},l.io 
of families such that (&) CS,, and 8, satisfies for every n the conditions. 
(*h (2), (3) and (5). 

Put % = IJ &. Then p(g) = K, and %== NW+,,,, since the Z,L’s satisfy 
n<w 

(1) and (2) for every n and the s,,‘s are obviously disjoint. 
Since the sets S, are disjoint, Fn F’=O, provided F C Svl, F' C S.,:,,, for 

n # n’. Thus, taking into consideration that ZV:l, satisfies (3) for every n, it 
follows that 8 possesses property C(2, r). But 8 does not possess property 
B(f) for any 1, since there exists an n, such that (r-1)(&+ I)+ 1 > 2 and 
the subfamily Z?,, of 3 does not possess property B((n--I)@,+ 1) + 1), 
because it satisfies (5). 

Thus part b) of Theorem 10 is also proved. 

REMARK. As we have already mentioned in (4.5), in the case r‘z =0 of 
the part a) of Theorem 10 the hypothesis (*) is not used. We do not even 
know whether one can prove Theorem 1Oa) for n = 1 without using (*). 

8. Results on the topological products. A topological space 5 is 
said to be x-compact if every family $lI,- of closed subsets of it with void 
intersection, xcnJIX= 0, contains a subfamily a’C8l?li (%‘< K,) with void 

: 
intersection. 

O-compactness means ordinary compactness. 
l-compact spaces are the Lindelof spaces. 
For the sake of brevity we introduce the symbol T(m, 2) -z to indi- 

cate the following statement: 
If 3 is a family of kcompact disc&e topological spaces, 8= m, then 

the topological product of the elements of d is x-compact. 
As usual, T(m, n)-r-+x denotes the negation of this statement. 
TYCHONOV’S classical theorem can be stated as follows: T(m, 0) -0 

for every cardinal number m. 

8 Ac’a IMathematica XII/l-2 
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Let S be a set, S= m, and let p(x) be a measure defined on all subsets 
of S such that the values of ,u(x) are 0 and 1, ,u({x}) = 0 for every x C S. 

The cardinal number m is said to be of measure 0 if every a-measure 
satisfying the above condition vanishes identically.12 

A well-known result of ULAM states that every cardinal number m less 
than the first strongly inaccessible aleph is of measure 0.13 

The hypothesis (*te*) states that a strongly inaccessible > K,, aleph is 
not of measure 0 or more generally: 
(H) If m is strongly inaccessible, >M,,, then there exists an m-additive meas- 
ure satisfying the above conditions such that :4(S) = 1. 

If we use (*), then Los’s theorem (Theorem 4 of [3]) states that 

T(%+I > 1)---x for every ~21, 

provided KX is regular and of measure O.‘& 
Now we are going to prove the following 

(*) THEOREM 11. T(kt,, a + 1) -I+ u + n for every ordinal number cc and 
for every 1s n<co. 

Before proving this theorem’” we compare it with Los’s theorem and 
state the simplest unsolved problems. Put ct =O, then our theorem states 
that T(&, 1) -I+ n for every n 2 1, and so it is stronger than Los’s theorem 
for the cases xc w. Moreover it is best-possible, namely T(bL, 1) -n + 1 
is trivially true, since the topological product of K, Lindelbf spaces contains 
a base of power ,Y, for every cc. For the case of singular x’s, e. g. for 
3c = CD the following problem remains open: 

PROBLEM 4. T(K,, 1) + o? 
(T(&,1) + o + 1 is trivially true and T(K,, 1) -I+ n for every finite n 

is a consequence of both theorems.) 
For X’S greater than o Los’s theorem is stronger, since our result 

states nothing about x-compactness of the product of Lindeldf spaces for 
x> co. 

But we do not know whether Los’s theorem is best-possible e. g. for 
x = u + 1, since it states ‘f (Hw+i!, 1) + o + 1 and the following problem 
remains open : 

PROBLEM 5. T(Kws2, 1) --* CD + 2? 
(Our Theorem 11 gives only that T(Ko+2, co + 1) -I+U + 2.) 

12 See [3], p. 14. 
13 See [7]. 
14 See [3], Theorem 4, p. 17. 
1.5 The proof is given on p. 115. 
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For M,‘s not less than the first inaccessible cardinal number JXX’S 
theorem does not stateLanything. The reason for this is that if, at least, we 
assume the hypothesis {**), then T(m,, 1) ---f a, is true where m,= H,, de- 
notes the first strongly inaccessible cardinal number >N,. More generally 
we have the following 

(w) THEOREM 12. If K, is strongly inaccessible, > K,, then 

T(Ka, cc)-+ Cf.lF 

We mention here that even using (*ic) and (**) we can not decide 
whether T(H,, 1) -+ cc’, is true if a>a, where N, is the first inaccessible 
cardinal number > N,. 

Our theorem shows that T(K,,, + n, cc0 + 1) -;+ cc0 + n for every 1~ n < W, 

but neither Los’s theorem nor our theorem disproves that T(m, cc0 + 1) -+ a, + w 

holds for every cardinal number m if K,, is strongly inaccessible >&,. 

PROOF OF THEOREM 11. Let r, be an integer such that (ro-l)(n -+ 1) + 
+ 1 s (ro-1)n + 2 (e. g. r, = 2). By Theorem 10 corresponding to every n 
there exists a family d ((3) = S) satisfying the following conditions: 

(1) p(S) = K,. 
(2) 8= Na+n * 
(3) 3 possesses property C(2, rO). 
(4) If for a set B B II F# 0 for every F c b, then there exists an F. c 3, 

such that 
F,nB{r,--l)(n+ l)+ 1. 

Let 8 = {Fy)F.c,atlz be a well-ordering of type OJ~+,~ of 3. Let 5 denote 
the topological product of the discrete spaces F?. The elements of X are the 
sequences (x&+,,,+,, where x, E F?. 

Corresponding to every .finite sequence eI < . s. < ~~ < mafia we define the 
subset B,,...BB((x~)eiw,+,) of S as the set of pith components of (x~)~,:,++,~ for 
i= I,..., k, i. e. we put 

(6) 

Now we define the subset XP1,,,ek of X as follows: 

(Xq)S.r-wa+n C XFL,..8k if and only if 

~((X,)p~~,I,,)nF,;<(ro-l)n+2 for every i== 1,. . ., k. 

‘6 For the proof see p. 116. 

a* 
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Put 

It IS obvrous that Xel...ek is a closed subset of X for every sequence 
Pl< b.. <@k<oa+,, and it results from (I) that the discrete spaces Fp are 
Ka+l-compact for every e < wa+, . Hence it is enough to prove the following 
assertions: 

(7) n 
@...&K 

X&..@. = 0 x 
and 

Proof of (7). Let (x$e(10d+12 be an arbitrary fixed element of Z’. Let B” be the 
set of those x < S for which there exisls a Q < w~+,~ such that x = xi. It is obvious 
that B” n Fp # 0 for every 0 ~r,-)+~%, hence by (4) we have for a eO< CU~+~ 

~~ 
8*nF,,~~(r,-l)~n+I)fl. 

Put (r,, -l)(n + 1) + 1= b. Then there exists a sequence Q:’ < a s b < $, such 
that ~0 -= et for an i, (15 ic! z /CO), {x~;}~~i~~~= k,> and {x~;}I~~~~, C F,, = F,%. 

But this .means that ~~,.,e~.u((x~)o-:~~+,~) n F,yo = h<{: (ro-l)n + 2 and 

thus by (6) (x&<ti+,, @X$...& which proves that the product considered in 
(7) is empty. 

Proof of (8). Let I(81’) denote the set of ordinal numbers e appearing as a 
subscript pi (i= 1, . . . , k) of an X+..Ok C %.‘. It is obvious that Xe ,,., pk# 
# x,; . !3;L if the sequences ~1, . . ., @k and @i, . . ., pi are different. Hence 
3rL’ c at, ZR < Ka+,L implies w)< tin+,?. Thus it is sufficient to see that 

n 
e,(i=l:...,li!, T;-< @, 

X;i.,,rk#O holds for every QO<W~~~. 

Put SVO = {Fpj}ojr+ for every el)< ZG,~. Then p(Se,) = K, by (1). geO 
possesses property C(2, rO) by (3) and T;eO~ &+,+I (n-l Zz 0) for every 
Qo < arfil . Thus by Theorem 8a) there exists a set B such that 

15-B n F,,< (ro -l)n+2 for every e’<~~. 

It results that we can point out an element x$ of B f~ Fpp for every e’<po 
and let xi, be an arbitrary element of Fp, for ~‘ZQ,YI. It is obvious from (6) 
that the sequence (x$+,~+,, so defined is an element of the product in 
question. 

PROOF OF THEOREM 12. Let 3 be a family, ?8 = K, such that F< K, 
for every Fe ZF:, Let b= {F,},,,, be a well-ordering of type ma of b. Put 
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3, = {F/&3 ‘ Let yt’ and &, denote the topological product of the elements 
of 3 and b,, respectively. If 0 = (x$,<~, is an element of b, then O/V 
denotes the element (x&<~ of &. 

Let there be given a family 31i of closed subsets of 5. Corresponding 
to every Xc &JR and v<ua we define a subset Y(X, V) of d, as follows: 

Y(X v> = {@/+3,x. 
The set {Y(X 4)xEaz is of power less than K, for every v < oo, since 

& is strongly inaccessible and zV < K, for every v < ma. As an easy conse- 
quence of this we obtain that -wEnz Y(X, V) # 0 for every V< ma, provided 

= 
n X+0 for every 3lrC3K, iTi’<%. 

X6312 
Put 2, = n Y(X, v). The Z,,‘s form a ramification system. By a result 

&3?2 
of P. ERD& and A. TARSKI’~ it follows from the hypothesis (w) that there 
exists a 0 c: d such that O/Y E Z, for every Y< Q~. 

Let X be an arbitrary element of 8K. Then for an arbitrary V< wW there 
exists a 0, f X such that 0,/v= O/v. Since X is closed, it follows that 
0 c X, and so 0 c n X, i. e. X is g-compact. 

Xdil, 
Now we state some unsolved problems which all would have been 

consequences of T(&, 1) -+ 2. The answer to all these questions is very 
likely negative, but we can not disprove any of them. In the formulation of 
all these problems we consider (*) to be assumed. 

PROBLEM 6. Let 3 be a family (SF= &, p(3) = Ko) such that every 
$F Sb (3’~ Kr) possesses property B. Does then d necessarily possess 
property B too?” 

The family 3 is said to possess property G if there exists a function 
f(F) defined for every F c d such that f(F) is an element of F and 
f(K) #f(F2) for K # 6. 

PROBLEM 7. Let 3 be a family (8= K?, p(3) = K,) such that every 
3’s $ (?$I 5 H,) possesses property G. Does then B necessarily possess pro- 
perty G too? I9 

17 See the footnote 4 on p. 328 of [8]. 
18 The following theorem is an easy consequence of TYCHONOV'S theorem: If 3 is a 

family of finite sets such that every finite subfamily of 3 possesses property B, then d 
possesses property B. 

19 This problem is due to W. GUSrlN (oral communication). It is well known and an 
easy consequence of TYCHONOV'S theorem that if for a family d of finite sets every finite 
subfamily of it possesses property G, then the whole family possesses property G too. 
See e. g. [9]. 
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PROBLEM 8; Let there be given a graph G of power K,. Suppose that 
every subgraph G, 5 M, of G has chromatic number not greater than &. Is it 
then true that the chromatic number of G is not greater than &?20 

Now we would like to formulate a problem which does not seem to 
follow directly from T(Ke, 1) -+2, but which belongs to this class of prob- 
lems too. 

PROBLEM 9. Let there be given a graph G of power Kn. Suppose that 
the edges of every subgraph G, of G can be directed so that the number of 
edges emanating from an arbitrary vertex is finite, provided G, 5 K,. 

Is it true that the same holds for the graph G?“’ 
A positive solution of Problem 9 would follow from the following 

generalization of TYCHONOV’S theorem. (This generalization is probably false, 
but as far as we know has not yet been disproved.) 

PROBLEM 10. Let 8 be a family of finite sets, 3 = &, and let 

67 = {E)Y<Og be a well-ordering of type w.) of 3. Let 3 denote the Descartes 
product of the elements of 3, i. e. X is the set of all sequences (x,,)~,~~~,, 
xy c F,,. A subset X of d is said to be &-modified if there exists a set I 
of ordinal numbers less lhan w.,, 
implies that (x:,),,~~~ 

is & such that x:= xf, for every v C I 
belongs to It’ if and only if (x$ 0z belongs to X. 

Let 3R be a family of &-modified subsets of X and suppose that the 
intersection of the elements of every subfamily 8?Z’ of 81 is non-empty, 
provided X’s K,. Is it true that for an arbitrary family &3?i satisfying these 
conditions n X#O? 

&m 

9. Further problems, Suppose p<N,.” The theorem formulated in 
the footnote]’ on p, 117 or similar considerations show that to clear up all 
the problems it would be sufficient to determine the values of the symbols 
M (m, P, q, r) - B, M@, P, ~1 + B(s) for finite m’s, and so we now suppose that 
m, p, q, r, s are finite. Obviously, if r= 1, then the problems become trivial. 
So the simplest cases when one can find unsolved problems are q = 2, r =; 2. 

30 It is well known that if every finite subgraph of G has chromatic mmber cot 
exceeding n, then G has chromatic number not exceeding n. See [lo]. 

21 As an easy application of TYCHOKOV'S theorem P. ERD~S and R. RADO proved 
the following theorem: 

If the edges of every finite subgraph of a given graph G can be directed EO that 
ihe number of edges emanating from an arbitlaty vertex is less than a fixed integer n, 

then the same is true for the graph G. 
22 T. GALLAI pointed out that interesting and perhaps deep questions can be asked 

concerning the symbols for p less than X,. 
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One can ask whether M(m,p, 2,2) -+ B is true for a p> 2 and for every 
m. The only non-trivial remark concerning this problem is that 

(9.1) M (7,3,2,2) -I+ B. 

This is shown by the Steiner triplets for m = 7. 
The simplest unsolved problem here is 

PROBLEM 11. Is it true that 

M(m, 4,2,2) --+ B holds for every m? 

We can not even decide whether there exists an integer p. such that 

M(m, po, 2,2) ---f B holds for every m. 

REMARK. The example (9.1) is best-possible in m, i. e. M(6,3,2,2)-+ B 
is true and it is interesting that for m = 6, M(6,3,2,2) -+ B(2) is true too. 
There remain interesting unsolved problems even if we omit the assumption 
that 8 possesses property C(q, r) for some q and I-. 

It is obvious that if m is sufficiently large, then a family d with 
p (8) =p, $= m has not to possess property B. Let m(p) denote the least 
integer m for which such a family exists. 

We have 

(9‘ 2) 

as it is shown by the subsets taken p at a time of a set having 2~1-1 elements. 
More generally, one can ask for the least integers m for which there 

exists a family F (3 = m; p(S) =p) which does not possess property B(s) 
where 2 5.~5~. Let m(p, s) denote this integer. (Obviously m(p,p)=m(p).) 
Similarly as in (9. 2) we have 

9.3) mbs)s 
pfs--l 

i i 
p . 

(9. 1) shows that the estimations (9.2) and (9.3) are far to be best- 
possible already for p = 3. The following problem remains open: 

PROBLEM 12. What is the order of magnitude of the functions m(p), 
W4 s)? 

Let us now return to the infinite sets. We would like to raise several 
new problems, most of which are unsolved, which are all connected to a 
lesser or greater extent to the ones which we considered so far. To save 
space we will only outline the partial solutions which we have succeeded in 
obtaining up to the present. 
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The first of these problems is the following: 
(9.4) Let there be given a family 5 (8= m, p($)=p) such that every 

subfamily b’ of 3 possesses property B(r), provided that @cm. Under what 
conditions for the cardinal numbers m, p, r and s does then 8 necessarily 
possess property B(s) or property B? 

For the sake of brevity we introduce the symbols S(m, p, r) -+ B(s), 
S(m, p, r) + B (S(m, p, r) -I+ B(s), S(m, p, r) i-t B) to indicate the positive 
(negative) solutions of the problems, respectively. It is obvious that the prob- 
lem stated in (9.4) is closely connected with the possible generalizations of 
TYCHONOV’S theorem treated in Section 8. We point out only the simplest 
and typical problems. A general discussion of this symbol seems to be 
hopeless at present. 

The example given by MILLER cited in Theorem 3 shows, if we assume 
(+), that 

(*Kg- 5) S(N,, No, 2)-1-B. 

This follows from the fact that the system of almost disjoint sets of 
power N, constructed by MILLER has the following property: if x is an element 
of the basic set and S(x) is the union of the sets belonging to the system 
containing x and F is a set of the system not containing x, then 
S(x) n F< No. 

Comparing Theorems 8 and 10 we obtain as a corrollary that 

(*)P. 6) S(Kz, Hi,, 4)-1-B(4). 

The following problems remain open: 

PROBLEM 13. a) S(K,, Kor 2)+ B(2) or S(&, M,, 2)-i+ B? 

b) S(K,, Ko, 4) -+ B(5) or S(H,, No, 2)-1-B? 

The following problem concerning the symbol introduced in (9.4) is 
the simplest one for which our theorems proved so far do not give any 
information. 

PROBLEM 14. Let r be an integer rs 2. Is it true that S(N,, No, r) --+ B(r) 
holds? 

REMARK. It is easy to see that a negative solution of Problem 14 for 
any r would imply a negative solution of Problem 4. 

The second question which arises concerning property B is the follow- 
ing: Theorem 3 (MILLER'S example) assures that there exists a family 3: 
(ZF = 2Xo, p(3) = N,) such that 3 possesses property C(2, NJ, but it does 
not possess property B. However, his example is such that (Z)=K, and 
one can ask whether this is an essential restriction. 
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Concerning this question, using (*), we can prove the following 
theorem : 

(z!z) (9.7) There exists a family 8F ($= b!,, p(3) = K,) which possesses pro- 
perty C(2, NJ such that it does not possess property B and satisfies the 
following condition : 

(A) (iF)=& for every b’C$, F = K,. 

We only outline the construction. 
Let S be a set, F= K,. Applying Lemma 3 stated in Section 4 we 

obtain that there exists a system S of subsets of S satisfying the following 
conditions : 

(1) p(S)=K,, %=K,. 
(2) S possesses property C(2, K,). 
(3) For an arbitrary S’C S (s’= K,) there exists an A E S such that 

AES’. 
Let S = {Ay}y~-W, and S- {x~}~<~[ be well-orderings of type w1 of the 

sets S and S, respectively. 
Let S, be a system of subsets of A, for which p(S,) =KJ, %I = K,, 

further let SV possess property C(2, NJ. Let Sy = {B,“},<,, be a well-ordering 
of type o1 of the set S, for every v < ojl. It is obvious that one can define 
a monotone increasing sequence {pu,},<,, of type w1 of ordinal numbers less 
than w1 such that EL, >,u’ for every x,,, E A,, (hence for every x,, c B,” for every 
P < m). 

Put C,Z = Bz u {x,+,+~} and SF’= {C~}E,<0,5U<01. It is obvious from (1) 
and (2) that $= N1, p(3) = K, and 8 possesses property C(2, NJ. The fact 
that B does not possess property B follows from the property of 8 stated 
in (3) (taking into consideration that a set which intersects every element of 
3 has to be of power K,). Finally, it is easy to verify that if F= K,, then 
(SII) = h’, for every 8’ C 3, since if @= K,, then b’ either contains K1 C,?s 
with the same v or Et, C,?s with pairwise different V’S. 

The following refinement of the problem solved in (9.7) seems to be 
interesting. Let us say that the set X is almost contained in Y if Y--X is 
finite. 

PROBLEM 15. Let 5 be a family (p(b) = K,, 8= K,) such that 3 pos- 
sesses property C(2, NJ and suppose that (instead of (A)) it possesses the 
following property: 

At most K, sets belonging to d are almost contained in a denumerable set. 
Does such a family 8 necessarily possess property B? 
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The answer is probably negative to this question too, but we can not 
disprove it even if we omit the assumption that d consists of almost dis- 
joint sets. 

The following question is connected with Problem 3 (namely a posi- 
tive solution of it would imply a positive solution of Problem 3b)): 

PROBLEM 16. Put S= {~},,:~~+i (S= Kwl). 

Let S,, denote the set {,u}~~* for every 2’ < wo+l. Then ST z Iy,, and so 
one can define a splitting of S, onto the sum of K. disjoint sets such that 

S,= lJ S,? and ?%<K, for every Y<u,,,+~. 
?LCW 

Is it possible to define the sets S:l in such a way that for every 
v< oo41 of the second kind which is not cofinal with cc), there exists a 
monotone increasing sequence {v~}~~~ of type q OF ordinal numbers less than 
v cofinal with Y and such that S,“zC S?’ for every n and for every z< ~‘<y? 

A similar but simpler problem is the following one: 

PROBLEM 17. Let S be the set of ordinal numbers less than wl. Is it 
possible to define a function f(v) on S such that f(v) c S, f(y)< Y for every 
Y < w, which has the following property: If Y<O, and v is of the second 
kind, then there exists a sequence f~,},<, o f type o of ordinal numbers less 
than v such that V, + Y and f(.~,+r) = Y,~ for n = 0, 1, 2, . . . . This problem 
is interesting in itself and seems to be very difficult. 

The positive solution of the following problem would imply a negative 
solution of an immediate generalization of Problem 9, namely it would assure 
the existence of a graph G of power K0,+l the edges of every subgraph of 
power M, of which can be directed so that the number of edges emanating 
from a vertex should be finite, but the whole graph can not be directed in 
such a way. 

PROBLEM 18. Let S be a set of power Nf,. Does there exist a family 
3: such that (a)ES, $ = Kwfl, p($!F) ==Ko, and which has the following 
property : 

(1) If S’CS, ??‘z K,, then there exist at most No sets F belonging to 
the family such that FnS = K,. 

REMARK. On the one hand, we can not disprove Problem 18 even if 
we require that 3 should possess property C(2, NJ, on the other hand we 
can not prove it if we require only that d should possess the following 
weaker property instead of (1): 

Every S’CS (St= K,) contains at most K, elements of the family. 
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We construct the graph G mentioned above as follows: Suppose that 
the family $F and the set S satisfy the requirement of Problem 18. Let the 
set of vertices of G be 3 u S. The edges are the pairs (F, x) where F c 8 
and x < F. It is easy to see that G has the property required. 

(Received 15 Junuary 1960) 

Added in proof (MARCH 3, 1961). The manuscript of this paper had 
been written before the authors knew that A. TARSKI has disproved the hypo- 
thesis (**). (See A. TARSKI, Some problems and results relevant to the founda- 
tions of set theory, Proceedings of the International Congress for Logic, 
Methodology and Philosophy of Science (Stanford, 1960).) 

Thus we have no arguments to prove our Theorem 12 proved with the 
help of this ,hypothesis. It seems that the theorem is false at least for the 
inaccessible cardinals m which are strongly incompact. 

It is obvious that the discussion of the unsolved problems concerning 
the symbol T(m, A) +x has to be changed in some places knowing the new 
result of A. TARSKI. 
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