ON A CLASSICAL PROBLEM OF PROBABILITY THEORY
by
P. ERDOS and A. RENYI

We consider the following classical ““urn-problem”. Suppose that there
are n urns given, and that balls are placed at random in these urns one after
the other. Let us suppose that the urns are labelled with the numbers 1,2, .. . | n
and let &; be equal to £ if the j-th ball is placed into the &-th urn. We sup-
pose that the random variables &, &, ..., &y, ... are independent, and

P&, =F) :%for i=12...and k=1, 2,..., n. By other words each

ball may be placed in any of the urns with the same probability and the
choices of the urns for the different balls are independent. We continue this
process so long till there are at least m balls in every urn (m =1, 2,...).
What can be said about the number of balls which are needed to achieve
this goal?

We denote the number in question (which is of course a random variable)
by v,(n). The ‘“dixie cup’-problem considered in [1] is clearly equivalent
with the above problem. In [1] the mean value M(vm{'n)) of »_(n) has been
evaluated (here and in what follows M( ) denotes the mean value of the random
variable in the brackets) and it has been shown that

(1) M(»,(n)) = n logn 4+ (m — 1) n loglog n + = + C,, + o(n)

where C,, is a constant, depending on m. (The value of C,, is not given in [1])-

In the present note we shall go a step further and determine asymptoti-
cally the probability distribution of »,(n); we shall prove that for every
real z we have

(2 lim P (™) < logn + (m — 1) loglog n + :r-] = exp |— A ] :
s 4o n (m—l)!
(Here and in what follows P{.) denotes the probability of the event in the

brackets.)
(1) can be deduced from (2); moreover we obtain from (2)

(3) C.,=c¢—log(m—1)! m =1, 2 i)
where ¢ is Euler’s constant, that is
1 +
ot —t
4) c=fl fe dt—[:—dt=0.5772....
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To prove (2) we shall consider the following related problem: Let ,(n, N'),
denote the number of balls in the k-th urn (¢ =1, 2, .. ., n) after distributing

N balls among the urns that is, we put z,(n, §)= > 1. Let us put
122N
(5) pn, N) = min x.(n.N) .
1=k=n
We have evidently
(6) P(vu(n) > N) = P(u(n. N) < m).
Thus to prove (2) it is sufficient to show that putting
(7) N(n) =n logn + (m — 1) n loglog n + zn + o(n)

(where o(n) is an arbitrary function of » which is of smaller order of magnitude
than » and is such that N(») is a positive integer for all #) we have

8) lim P(u(n,N(n)) <m)=1—exp|— e y
{ = {‘u( )) 3 l (m — ])'
Now clearly we have for j < m — 2
4 N(n)| 1 1 MR 1 '
9 P(u(n, Nn)) =)< n|* __{1___ | [
( ) {'u( { ) ?) . > | RJ i (log n')m_.l_jJ
and thus
(10) lim P(u(n,N(n)) <m—1)=0.

n—+—+=

Denoting by 4,,(n) the event that there is at least one & for which zy(n, N(n)) =
=m — 1, we have clearly

Plp(n. N(n)) < m) — P(4,,(m) < P(u(n,Nn)) <m —1).
Thus to prove (8) it suffices to show that

(11) lim P(A4,(n))=1—exp

n-~4 o=

e E y
(m — 1)

But clearly
n \

(12) P(dp(m) = > l:] (— 11 (n)
k=1 :

where W,(n) is the probability of the event that k prescribed urns contain
exactly m — 1 balls. Now evidently

Nm)! 1 [ 1 N(my—(m—1)k
(VI = m — 18 mmw | )

(13) W.(n)=

and therefore
i _

k!

Wk

(14) lim

o

. (k=1,2,...)

-
v I W.in)= -
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It is easy to see that if we stop after taking an odd resp. even number
of terms on the right of (12), we get a number which is greater resp. smaller
than the left hand side of (12). It follows therefore from (14) that (11) holds.
As mentioned above, with respect to (10) this implies (8) and taking (6) into
account (2) follows.

To deduce (3) we note first that putting

(15 F_(x) .
4 T = ex e
: " - p( (m — 1)!]
we have, with respect to (4),
4o
{16) “.ﬂdem{:l')tg_log(.m__]}!.

Now it is easy to show that in the present case the limit of the mean
value is equal to the mean value of the limiting distribution that is

(17) lim M .—y—’-’—’gl —fogn — (m — 1) loglogn

Nt

= [ ad Fpey,

—'ca

which proves (3).
Let us mention that in view of (3), (2) can be written also in the form

(2 lim P

m- 4=

1’.&?___1“_(":_::(3%_)_)] N
n _ ' o .

which shows that the limit distribution of -1 -

m(1) ﬁ;—(y‘-"-{}—?’}-}- does not depend
on m.

It should be mentioned that for the special case m = 1 (2) can be deduced
in an other, more straightforward way, namely by the method by which the
explicit formula

' 1 1 1
(8) M(2,(n)) = l+—+—+...+—]
2 3 n
is proved in [2]. Let us denote by win, k) (k=1,2,..., n) the number

of balls which are necessary in order that exactly £ urns should contain at
least one hall. Clearly »(n, 1) = 1, »,(n, n) = »;(n) and the random variahles

(19) oy=1, 6, =wn k) —vn k-1 (k=273...,n)
are independent. We have further
(20) P, =j) = p (1 — p i Gi=12....)
where

W o

¥ T = ‘) . DR .
pk n (’{ -y ‘3 1 ??}




218 ERDOS—RENYI

Thus it follows that the characteristic function ¢, (t) of

n ]_ n=| 1
vl(-n-)—nigz 62+63+...+6n—n2]z
W= T T n o
is given by
: 1
(21) ‘Pn('t) — M{e”’?") A T T
h il
Ee [1 + (e 1)’
and thus
(22) lin @,(t)= —;.—“,,—1*'-——{— 3
fimect IT % [1 it
ft=1 1 h

By the classical product representation of the gamma function it follows
that

(23) lim ¢, () = I'(1 — 4t) e—itc

i

where ¢ is again BEuler’s constant. As however by the integral representations
of the gamma function we have

+ o
(24) [ extd Fy(z) =T'(1—3t)

—u

where Fi(z) is defined by (15}, it follows that

’ 1 1 "
nm—nll+—t ...+ -—o
(25)  lim P{ —— L P ca|=F@=c,
R— -+ (3 i
and as it is well known that
1 1 1
(26) 14+ —+—+4 ... +—=logn+ ¢+ o(1)
2 3 n
we obtain
(27) 1im_ P w)_,_-_ﬂ'k)—gn_' x| = e—-c—‘ .

n— 4o

Thus we obtained a second proof of (2) for m = L.

Finally we consider the following problem: Let w.(n, N) denote the
number of urns containing exactly % balls, if we place at random N balls
into n urns. Let us investigate the asymptotic distribution of w,,_,(n, N(n))
where N(n) is given by (7). (By other words we take so many balls that the
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probability that there should be less than m —1 balls in any of the urns
should tend to 0). By using the well known formula of Cr. JorRDAN [3] we have

.

(28) P (0ns(n N () = k) = ‘20 (= W Wy ym) lk ;u}_ f}

e

(
Thus it follows from (14) that

: ' v Ak
(29) lim P(w,_y(n N(n))=k)=
n—+ * : k!
where
30 e B
(2 (m—1)!

Thus the number of urns containing exactly (m —1) balls will be in

the limit distributed according to Poisson’s law with mean value(—-—_l)[.
m ey
In the special case m = 1 this result states that if we distribute n log n +
+ n -+ o(n) balls among » urns then the number o, (r, N (n)) of empty urns
will for n —> oo in the limit be distributed according to Poisson’s law with mean
value e~*. This special case was mentioned already by S. BerNSTEIN [4]
(see also [5] Ch. IV. Problem No. 8.).

It is an interesting problem to investigate the limiting distribution of
V(n) when m increases together with », but we can not go into this question
here.

Finally we mention that the problem treated above is analogous to a
problem concerning random graphs which we considered recently (see [6]).

(Received February 7, 1961.)
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06 0JHOM KJACCHYUECKOM MPOBJIEME TEOPUH BEPOSITHOCTEMN
P. ERDOS u A. RENVI
Pesome

B n siuuKos Gpouiexo Haynauy N apobunok. IlycTb B sAlIMKe Homepa
(k= 1,2,...,n) nonajaer z(n, N) apoduHor. ITonoxum

pw(n, N)= minz,(n N).
1Sk=n
ﬂ,OK&BbIBaeTCﬂ qTo eclii
N(n) =nlogn+ (m — 1)nloglog n + xn + o(n),

rjae m Qejoe noJioyKHTEIIbHOE YUCIIO, TO UMEET MeCTOo

lim P(_p(ﬂ,N(ﬂ)) <m)=1—exp i‘ (_

e




