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1. Introduction
E. SperxER (1) has proved that every system of subsets a, of a set of

Jinite cardinal m, such that a, ¢ a, for u v contains at most (?;) elements,

where p = [3m]. This note concerns analogues of this result. We shall
impose an upper limitation on the cardinals of the «, and a lower
limitation on the cardinals of the intersection of any two sets a,, and
we shall deduce upper estimates, in many cases best-possible, for the
number of elements of such a system of sets «,.

2. Notation

The letters a, b, ¢, d, @, y, z denote finite sets of non-negative integers,
all other lower-case letters denote non-negative integers. If & < [, then
[%,1) denotes the set

{k, b+1,%4-2,... -} ={: b <t < 1.

The obliteration operator * serves to remove from any system of elements
the element above which it is placed. Thus [k,1) = {k,k-1,...,I}. The
cardinal of a is \a|; inclusion (in the wide sense), union, difference, and
intersection of sets are denoted by a c b, a-}-b, a—b, ab respectively, and
a—b = a—ab for all a, b,

By S(k.1,m) we denote the set of all systems (a,,a,,...,d,) such that

a,c[0,m); la,| <! (v <m),

a,¢a,da,; laa, =k (p<v<a)

M’
3. Results
TueoreM 1. If 1 <1 < dm; (ag,...,d,) € S(1,1,m), then n < (‘T_ll)'
If, in addition, 'a,| < 1 for some v, then n < (’H;: _11)‘
THEOREM 2. Let k <1< m,n =2, (a...,d,) € S(k.1,m). Suppose
that either A< k+m, o] =1 (v<n) (1)
ort A< 14m, o, <1 (v <), )

T The condition |x,| =< Lis in fact implied by (ay,..., 4,) € S(k, [, m).
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314 P. ERDOS, CHAO KO, AND R. RADO
Then (a) either (i)

—~k
(e | = K, ngﬁiﬁs
) i _ m—k—1\{1\?,
or (il) iao...w.n.I < k=l <m, n < ( l-—-k——l)(k) #
- I\3 —k
() if m = fc—l—(l—k)(k) > then n < (J—k)'

Remark. Obviously, if |a,| =1 for v < n, then the upper estimates
for » in Theorem 1 and in Theorem 2 (a) (i) and (b) are best-possible.
For,if kb <1< m and if a,,..., 4, are the distinet sets a such that

[0,k) c a c[0,m), la| =1,

then (@gs-.-,d,) € Sk, 1, m), n = (??-_}f)

4. The following lemma is due to Sperner (1). We give the proof
since it is extremely short.

Lemma. If
n =1, a,cC [O}m)v la,l =1, (v <ny),

then there are at least ny(m—1))(I,+ 1)~ sets b such that, for some v,
v <y a,Cbc[0m), [b] =Ilo+1. (3)
Proof. Let m, be the number of sets b defined above. Then, by

counting in two different ways the number of pairs (v, b) satisfying (3),
we obtain ny(m—I) < n,(ly+1), which proves the lemma.

5. Proof of Theorem 1

Case 1. Let |a,| =1 (v < n). Wehavem = 2, If m = 2,thenl = 1;
m—1
I—1
for fixed I, m, n, the g, in such a way that the hypothesis holds and,
in addition, the number

Hgpers ) = 848

is minimal, where s, is the sum of the elements of a,. Put 4 = {a,:v <n}.
If 21 = m, then [0, m)—a, ¢ 4 and, hence

1im m—1
2w = :
”“ﬂh) @—J

n=1g< ( ) Now let m = 3 and use induction over m. Choose,

Now let 21 < m.
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Case 1@. Suppose that whenever
m—leacd, Ae[0,m)—a,
then a—{m—1}+{A} e 4.
‘We may assume that, for some n, << n,
m—lea, (r<mny), m—1éa, (ng<v<n).
Put b, = a,—{m—1} (v < ny).

Let p < v < mn, Then
[a'lu,_i"av! < 21 < e,

and there is Ae[0,m)—a,—a,.
Then b, +(}ed,  bb, = (b, Wb, = b+, £ o

and therefore
I—1 =1, (bgs-res byy) € 8(1,1—1,m—1).

Since 2(I—1) < m—2 < m—1 we obtain, by the induction hypothesis,
Ny < (W;L ) Similarly, since
(@preees &) € S(1, 1, m—1), 2l < m—1,

we have n—n, < T_IQ . Thus

1 = nok(n—ny) < (’*’?_‘22) +(1) = (150)
Case 1b. Suppose that there are a € 4, X €[0,m)—a such that
m—lea, a—{m—1}+{A}¢A.
Then A << m—1. We may assume that
m—lca, A¢a, b =a,—m—L+N¢d © <np),
m—lea, Ada, c,=a,—{m—1}+Qed (ny, <v <mn),

m—lea, Aca, (n <v <ny),

m—1¢a, (ny < v <m).
Here 1 < ny <, <y, <n. Puth,=a,(n, <v <n). Wenowshow
that (boserrs b,) € (1L, 1,m). (4)
Let o < v < n. We have to prove that
b, #b,, bbb, Fo (5)

If o <v << myorny < p <v,then (5)clearly holds. Now let u <<m, <v.
Then b, ¢ A, b, =a,€ A, and hence b, #b,. If nyg <v <=, then
c,€A, and there is cea,c,. Then o+ A, ¢ £ m—1, and oeb,b,.
If ny <v <my, then Aeb,b,. If, finally, n, <v < n, then there is
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peaya, Then
peEa, p < m—1, peb,b,

This proves (5) and therefore (4). However, we have
FBoseens ) —Fltgsen d,) = np(—[m—1]42) < O,

which contradicts the minimum property of (a,..., d,). This shows that
Case 1b cannot occur.

Case 2: min(v < n) |a,| =1, <.

If I, = I, then we have Case 1. Now let [, < I and use induction over
1—1,. We may assume that

lee,| = 1y (v < my), la,| >1, (ng <<v<n) (6)

where 1 < ny < n. Let b,..., b, be the distinet sets b such that (3) holds
for some v. Then

(lo+1)—(m—1,) < 2(—1)+1—m <0, (7)
and hence, by the lemma, n, = n,. Also,
(bo,...,ﬁ.m, @ppgse-n By) € S(1,1,m).
Hence, from our induction hypothesis,
n = mH(n—mny) = (—m— 1),

—1
and Theorem 1 follows.

6. Proof of Theorem 2
Case 1: &k = 0. Then

20 < 1+m, la,] <1 (v <n), (@gs:--» &) € (0,1, m).
Now () (ii) is impossible, and () (i) is identical with (b), so that all we
have to prove is that n < (??) Again, we may assume (6), where
Ih<!,1<my<n Ifl,=1then
=1 w<n), =n< (’}"")
Now let I, < I and use induction over I—I,. Let b,,..., b,, be the distinct

gets b such that (3) holds for some v. Again (7) holds and, by the lemma,
n, = n, We have

(Bgseers Bys @pgseees ) € S(0,1,m)
and, by our induction hypothesis,

1 < myt-(n—ng) < (""f)

This proves the assertion.
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Case 2: k > 0. We separate this into two cases.

Case 2a. Suppose that (1) holds. Put |a,..d,| = r. We now show
that, if » = k, then (i) follows. We may assume that

ay...4,, = [m—r,m).
Put a0,m—r) =¢c, (v <n).
e (Corenns b)) € S(0,1—1, m—7),
2(l—ry—(m—r) = 2l—r—m < 2l—k—m < 0.
Hence, by Case 1,
< (i) -laz) < (05) = (5

so that (i) holds. We now suppose that (i) is false, and we deduce (ii).
We have lggaitly| =7 < b [@e8:1] < @] £
and therefore 20 < k4m < l+m, E<l<m.

There is a maximal number p = »n such that there exist p—n sets

@,y &, satisfying (Ggyeenr ) € S(, 1, m). )
Put A’ = {a,: v < p}. We assert that
(a’(b“'} dp) é S(k*ll_']',z, m’)' (9)

For otherwise |a,a,| > k(1 <v < ). Let @ € A’. Then we can choose
a’ c[0,m) such that
@’ =1, lae’| = [—1.
Then, for every b € 4’, we have
la'b| = |ab|—1 = k

and hence, since p is maximal, ¢’ € A’. By repeated application of
this result we find that
[0; I)) [m—lam) € At: k < |[0, E)[m'_z} m}l == l_(m_l) g k:

which is the desired contradiction. This proves (9), and hence there
are sets @, b€ A" such that |ab| = k. Since |a...d,| < |a,...d,| <Fk,
there is ¢ € A’ such that |abc| << k. Denote by 7' the set of all triples
(#,9,2) such that xca,ycb,zce, |x] = |y| = 2| =k, [v+y+2z| <L
Put ¢(z,9,2) = {d: x+y-+2zcde A'}. Then, by (8),

A" =3 ((x,y,2) € T) ¢(,y,2).

If (z,y,2) € T and s = |z+y-+2|, then s > [k since otherwise we obtain

the contradiction
k> |abc| = |xyz| = |z| = k.
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Hence
m—s m—s m—hk—1 m—k—1
s <1 =22 < () - i)
v m—k—1\/1\3
n<p=w1< (700
which proves (ii).

Case 2b. Suppose that (2) holds. We may assume (6), where [, < [;
1 <ny<<n. Ifl, =1 then Case 2a applies. Now let /, <~/ and use
induction over {—1I,. Let by,..., b, be the distinct sets b satisfying, for
some v, the relations (3). Then (7) holds and hence, by the lemma,
n, = . Also, since I, <<l << m, so that m—I;, = 2, we have, by defini-
tion of the b,,
b 5 = ly.- Am? |b bm Ho'” nr = |a'0"'dnl <k

Since (Do bnl,am,...,an) e Sk, I,m),
it follows from our induction hypothesis that

m—Ek—1\{I\3
<mrtnmn < (1),

It remains to prove (b) in Case 2. If & = I, then (b) is trivial. If
3
h<landm > k+(l—k)(i) ' Fion

m—k\  [(m—k—1 m-—k> m—k—1\[1\3
k)  \1—k—=1)1—k T \1—k—1 \R}’
so that (b) follows from (a). This completes the proof of Theorem 2

7. Concluding remarks
(i) In Theorem 2 (b) the condition

m > k()

though certainly not best-possible, cannot be omitted. It is possible for
(Ggseersdy) € S(k, 1, m), E<l<m

’?:f) This is shown by the

following example due to S. H. Min and kindly communicated to the
authors. Let a,..., 4, be the distinct sets @ such that

aclo,8), la| = 4, le[0,4) = 3.

to hold and. at the same time, n > (

Then

n=16, (Ag...ay;) € S(2,4,8), ("’?‘If) - (g) =15 < n.
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A more general example is the following. Let » > 0 and denoteby
@+, G, the distinct sets @ such that

a c[0,4r), la| = 2, la[0, 2r)| > 7.

Then (@gyeees ) € S(2, 27, 47),
and we have

R G- o ()

2r— \
_Ecir 12?‘2
—2\2r) 2\r)”

) m—k dr—2
In this case ( .Z—-k) = (21,_2)’
and, for every large r, possibly for every » > 2, we have (g_— k) =

We put forward the conjecture that, for our special values of %, I, m,
this represents a case with maximal n, i.e.

If r > Oa (a'l]:!"‘aé-n.) € 3(23 2?5 41’)’
L{dr\ 1/2r\2
then n < §(2?.)._5(?’) -

(i) If in the definition of S(1,/,m) in § 2, the condition @, ¢ a, ¢ a,
is replaced by a, # @, and if no restriction is placed upon |a,|, then
the problem of estimating » becomes trivial, and we have the result:

Let m >0 and a,c[0,m) for v <n, and a, #a, a,a,#eo for
p<v<mn. Then n < 271, and there are 2™~ —n subsets a,,..., Ggn—
of [0,m) such that a, # a,, a,a, F 0 for p <v < 2mL

To prove this we note that of two sets which are complementary in
[0,m) at most one occurs among a,,..., d,, and, if n < 2m-1  then there
is a pair of complementary sets @, b neither of which occurs among
ay,..., 4,. It follows that at least one of a, b intersects every a,, so that
this set can be taken as a,,.

(iii) Let I = 3, 2] << m, and suppose that

a, c [0, m), la,, =1 for v <n,
and
Gy F a,a, #9 for p<v<mn, and a..d, =0
We conjecture that the maximum value of » for which such sets a,
can be found is ny, where

m—23 m—3
By= 3(3_2)"'(3_3)‘
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A system of n, sets with the required properties is obtained by taking
all sets a such that

a c[0,m), le[0,3)] = 2, la] = 1.

(iv) The following problem may be of interest. Let £ << m. Deter-
mine the largest number n such that there is a system of » sets a,
satisfying the conditions

a, + a,, la,a,| = Eo(p<v<n)
If m+-k is even, then the system consisting of the a such that
acl0,m), |a| = j(m+k)
has the required properties. We suspect that this system contains the
maximum possible number of sets for fixed m and k such that m-+k
is even..

(v) If in (i) the condition a e, # 6 (x <» <n) is replaced by
a,a,a, 70 (p <v <p <n), then the structure of the system a, is
largely determined by the result:

Let m =2, a,c[0,m) for v <n, ,#a, for p<v<mn, and
a,a,a, %6 for p <v<p<n Then n <2m, and, if n= 2",
then aqa,...d,, 5~ o, so that the a, are all 27— gets « ¢ [0, m) whickh contain
some fixed number t (t < m).

For there is a largest p (1 << p < n) such that

aoal'“‘ip € {“’0: yseee d’ﬂ}'
If p = n, then a,...4, = a, # o for some v < n. If p <<, then any
two of the n1-1 distinet sets
Qg @y By By Gyseeny 8y
have a non-empty intersection and hence, by (ii), n-+1 < 2m-1,
Different proofs of (v) have been found by L. Pésa, G. Hajés, G. Pollak,
and M. Simonovits.
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