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A PROBLEM ABOUT PRIME NUMBERS AND THE
RANDOM WALK I

BY
P. Ernos

I am going to prove v = 1. Denote by u(a, b) the probability of the
random walk passing through e if it starts at b. It iz known and easy to
prove that

(1) u(a, b) ~e | b—al™

(see K. Itd anp H. P. McKeax, Jr., Potentials and the random walk, Illinois
J. Math., vol. 4 (1960), pp. 119-132; also a paper of Murdoch cited therein
where a sharper result is obtained). In the sequel, the letters p and ¢ de-
note primes and u(p, ¢) = u(a, b) incasea = (p,0,0) and b = (g, 0, 0),

Consider the number ¢(n) of points (p, 0, 0) (p =< n) that the path hits.
We have to prove that for almost all pathse(n) T = asn T =.

By (1) and Mertens’ estimate Zpé,. p " ~lgen (lg, = lglg), we evidently
have

(2) Ele(n)] = 2pga (0, p) ~ €1 2pga | ~ 1 lgam,
Next, we prove by a customary argument
(3) El(e(n) — e1lgan)’] = o(lge n)’,

which establishes the weak law of large numbers for e(n), i.e., it shows that
e(n) = ¢ lgen + o(lg: n) except for a set of small measure, and this is enough
for our purpose.

Clearly by (2)
(4) El(e — e1lgan)’] = E(¢) — ei(lg n)* + o(lge n).
Turther we evidently have

E(¢") = 2pznu(0, p) + Dpcuze (10, P)ulp, ¢) + u(0, Q)ulg, p)]

261 2 ocrzn [1/0(p — @) + 1alp — @] + o(lg2 n)".

Mertens’ estimate cited above gives D ,cp<. 1/(gp) = 2(lgan)® + O(lge ),
and so

2wz 1/9(p — @)

Il

(5)

Il

D acpen 1/(ap) + 2acozs [L/a(p — @) — 1/gp)
%(lgz n):! i Zqﬂwgn 1/;0(;0 = ‘1'} -+ O(]g'z n)-

Thus we have only to estimate D ,cpcn 1/0(p — q).

(6)

Il
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Put & = 0if k is not prime and ¢, = Y .., 1/(p — ¢). We have
(7)) Lecrzn 1/p(p — @) = 2imt &/k = 2icase/k(k 4+ 1) + O(1)

by partial summation (s; = ZLI £:). A well-known theorem of Schnirel-
mann states that the number of solutions of p — ¢ = a (p = k) is less than
e k(g B) ] Ipe (1 + p") where ¢ is an absolute constant. Thus

(8) s <ekgh) 22t a [l (1 + 2" < ek/igk

since by interchanging the order of summation we have the well-known

:=] a_l Hp[a (1 + ?7_1) = Zf‘-l d-l Zaﬂl}huod d),ask
< e Doaalgk/d < eslgk.
Thus from (7) and (8)
) 2 o<osn 1/p(p — @) < c5lgan.

From (9), (6), and (5), we finally obtain E(¢") = ¢i(lga n)* + o(lg n)?
which proves (3), and thus the proof of our theorem is complete.

By using a sharper estimate than (1), it is easy to show that for almost all
paths

(10) limu.. e(n)/elgan = 1.

By the same method one can prove that if the integers ¢ = ¢ < . < ---
satisfy
(11) G —@a>elgn (n=2), 2 1/¢= =,

then almost all paths pass through infinitely many points (g, 0, 0). The
primes probably do not satisfy (11) since probably there are an infinite num-
ber of prime twins, but one can prove by Brun’s method that one can select
a subsequence that does satisfy (11).
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