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1. Introduction. In the preceding paper Bose, Shrikhande, and Parker 
give their important discovery of the disproof of Euler’s conjecture on Latin 
squares. In this paper we show that their results can be strengthened to imply 
that N(n), the maximal number of pairwise orthogonal Latin squares of order 
n, tends to infinity with n. In fact there exists a positive constant c, such 
that N(n) > n” for all sufficiently large n. 

Our proof involves no new combinatorial insights, but is based entirely on 
a number-theoretical investigation of the following inequality due to Bose 
and Shrikhande. 

THEOREM A, If k<N(m)+l and l<u<m then N(km+u) 
> min{N(K), N(k + l), 1 + N(m), 1 + N(u)] - 1. 

The only other results on Latin squares which we need are due to H. F. 
MacNeish. 

THEOREM B. (1) N(ab) > min(fV(u), N(b)}. \ 
(2) M(p) = q - 1 if q is fhe power of a prime. 

In $ 2 we give a proof of the fact that N(n) tends to infinity, using only 
the most elementary tools. In $ 3 we use Brun’s method to obtain quanti- 
tative results on the lower bound of N(n). Finally, in 5 4, we discuss the 
theoretical limitations on the results that can be derived from Theorem A. 

2. Proof that 

lim N(n) = ~0. 
n--Kc 

Let x be an arbitrarily large positive integer. Let 

(1) k + 1 = gz P” (p prime). 

Then by Theorem B we have 

(2) fV(k + 1) > zz - 1 > x 

and 

Received August 8, 1959. This paper was written while the authors were members of the 
Number Theory Institute (Summer, 1959) in Boulder, Colorado. The authors wish to acknow- 
ledge with gratitude the opportunity for collaboration given them by this Institute. 

204 



PAIRWISE ORTHOGONAL LATIN SQUARES 205 

(3) N(k) > x 

since all prime factors of k are greater than x. Now set 

(4) ml = kk gn qk (a prime). 

AZ 

Note that while ml is defined in terms of n, it has an upper bound which 
depends on x alone. If n is sufficiently large then the interval (n/(k + l)mr, 

(n - l)/kmr) contains a number mz such that 

(5) m2 = 1 (mod k!). 

Thus the least prime factor of m2 is greater than k. 
If we set m = mrm2 then from Theorem B and equations (4), (5) we obtain 

(6) iV(m) > min(fV(ml), N(mz)) > min{2k - 1, k]. 
> k. 

Thus the first condition of Theorem A is satisfied. Finally we set u = n - km. 
Since we had chosen n/(k + l)mr < ma < (n - l)/kml we have km + 1 
< n < (k + l)m, so that 

(7) l<u<m 

which satisfies the second condition of Theorem A. From (l), (4), and (5) 
we see that n and km are incongruent module any prime less than x and 
therefore u has no divisors less than x. Thus 

03) N(u) > x. 

Combining (2), (3), (6), and (8) we obtain from Theorem A 

(9) N(n) > x - 1 

for arbitrary x and sufficiently large n. 

3. Numerical estimates on the lower bound of N(n). In addition to 
Theorems A and B we need a result of Brun’s sieve method. We shall use 
the following theorem due to H. Rademacher (1). 

THEOREM C. LetP(D;x;@l,.. . , p,) denote the number of positive integers, 
y, no greater than x which lie in an arithmetic progression A + tD(t = 0, 1, . . . ,) 

where0 < A < Dand (A, D) = 1 and so that y f af (mod $0, y $ br (mod pc) 
(i F 1, . . . , r). 

l--p, < . ‘. < pT are primes with pi > 7, then 

PO; x; Plr . ‘ * , P,) > D gip _ C’ pr79/10 

7 

where C and C’ are positive constants. 

We shall also need the following simple fact. 
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hM&fA D. The mmber of &tegeys, y, no greater than x which are dtiisible by 
a firime factor 2;1 of n so that p > xc, is no greater than x/tnc. 

Proof. Obviously there are at most x/p numbers y divisible by p and 
therefore the number in question is no greater than 

since there are less than l/c prime factors of u which exceed nc. 

Case I. n is even. Pick k so that 

(10) k = -1 (mod 2[‘ji10g2n1j, k E 1 (mod ljj; 

k f 0 or - 1 (mod p) for p prime, 7 < p < nr”‘: k < +zl’lo. 

We note that this restricts k to an arithmetic progression with difference 

Thus by Theorem C there are at least 

c nll10 79 1 

(11) 
Cl ?PQ1 log2 n (l/90)” 

_ C' nm'm 

choices of k. 

= c2n si/910/log” ra _ C’ n79/900 > c8 ns1/910/log2 n 

According to Lemma D the number of natural numbers below nlilo which 
have a prime factor greater than ?z~/~O in common with n does not exceed 
SO 7~~‘~~. Since 81/910 > 8/90, it follows from (ll), and the fact that k has 
no factors less than E”~~, that we can choose k so that 

(12) (k, n) = 1. 

From (10) and Theorem B it follows that 

(13) X(k) > nl”’ - 1 > 3 +z”~‘, 

N(K -+ 1) > min 1% nl”l, nl”‘] - 1 > Q nl”l, 

for n sufficiently large. 
We now set n = nr + nzk where 0 < nl < k and let u = nr + zclk, where 

we pick u1 subject to the following conditions. 

(14 ZCI $ nl (mod 2j ; 

2.~~ f --nl,lk (mod p), p C k 
ul # 122 (mod p> 

p prime, 3 < 9 Q k; 

Ul < n15g’200. 

Note that the incongruence (mod 2) implies that u is odd. 



The incongruences modulo 2, 3, and 3 can be satisfied by restricting u1 to 
a progression with difference 30. In order to apply Theorem C we need 
(or, 30) = 1. If (ur, 30) > 1 we write u1 = ur’ . (or, 30) with (ur’, 30) = 1; 
then according to Theorem C, the number of such choices of al’ is at least 

(15) Cn 
159/200 

30 log2 k 
_ c’ k7911@ > c1 ~153/200/log2 n _ c’ n79/100 > o 

for 1z sufficiently large. 
From (14) we see that u is not divisible by any prime less than k and 

prime to k. If u were divisible by a prime p which divides k, then 1~1, and 
hence n, would be divisible by 9, in contradiction to (12). Hence from (13) 
we obtain 

(16) N(u) > k > S(k) > +nrigl for sufficiently large n. 

Also, if we set m = (n - u)/k, then 

(17) m > n/nlllo _ (1 + n153/500) > +9/10 

> n”‘O + (1 + n159’200) > 24. > 1 

for sufficiently large n. Finally, according to (12) and (14)) all prime factors 
of m exceed k so that 

08) X(m) > k > N(k) > $nligl. 

According to (17) and (18) our choice of k, U, m satisfies the conditions 
of Theorem 4. Thus by (13)) (16)) and (18) we have 

(19) -V(n) > $zligl for all sufficiently large even n. 

Case 11. n odd. Instead of applying Theorem C to k we apply it to k + 1 
with equation (10) replaced by 

(10’) k f 1 = 1 (mod 2” 10gpn’) k + 1 3 2 (mod 15); 

k + 1 # 0 or 1 (mod fi) for i < p < n”“; 

k + 1 ( nl”‘. 

The rest of the argument on k proceeds as before and equation (12) remains 
unchanged, while (13) becomes 

(13’) X(k) > min{&zl’gl. nllgo) - 1 > $zl’gl, 

.Y(k + 1) > nllgo - 1 > $l~r/~l. 

The choice of u is modified so that (14) is replaced by 

(14’) u1 $ n2 (mod 2); u1 + - XI/K (mod P) 

for all primes 3 < p < k which do not divide k; while ~1 $ ~2 (mod $) for 
all primes 3 Q p < k; u1 < n15g/200. 
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It then follows from (13’) and (14’) that both n and m = (n - u)/k are 
odd, and the remainder of the argument proceeds exactly as before to yield 
the following. 

THEOREM. There exists a number no so that joor all n > no we have 

iv(n) > +zl’gl. 

4. Remarks. The exponent l/91 in our result is far from best possible. We 
have not used the best available sieve method, nor have we even squeezed 
the last drop out of the sieve method quoted. It seems, however, reasonable 
to defer such efforts in the hope that other theorems of the type of Theorem A 
can be developed, which may eliminate the twofold use of the double sieve of 
Theorem C. This would be accomplished, for example, if either the occurrences 
of both N(k) and N (k + 1) or the inequality ,!jT(m) + 1 > k could be elimin- 
ated. 

Theorem A can never lead to h7(n) > n112 since we must have n > mk and 
iv(m) + 1 > k so that k < m < &I2 and N(k) < n1J2. 

On the other hand, our result seems to eliminate the possibility of a reason- 
able modification of MacNeish’s conjecture which would express N(n) in 
terms of prime power divisors of n; since for any positive c there are infinitely 
many n for which even the greatest prime power divisor is less than nc. 
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