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Distributions of the values of some arithmetical
functions

by

P. Erpos (Budapest) and A. ScuiNzer (Warszawa)

§ 1. Y. Wang and A. Schinzel proved, hy DBirun's method, the fol-
lowing theorem ([3]):

For any given sequence of h nown-negative iwimbers ay, @,y ..., ay and
e >, there exist positive constants ¢ = cla, ¢) and zy, = @y(a, &) such
that the number of positive integers n < & satisfying

(n41 |
_¢( + ) -l <e (A<i<h)
p(n+i—1) |
is greater than cx/log"‘x, whenever x> x,.

They also proved the analogous theorem for the funetion a.

Shao Pin Tsung, also using Brun’s method, extended this result
to all multiplicative positive funetions f.(n) satisfying the following con-
ditions ([4]):

L. For any positive integer I and prime number p:

lim (f,(p")/p¥) = 1 (p denotes primes).
Do
I1. There exists an interval {a,b>, a = 0 or b = oo, such that for any
integer M >0 the set of numbers f(N)/N®, where (N, M) = 1, is dense
in {a,b)>.
(This formulation is not the same but equivalent to the original one.)
In this paper we shall show without using Brun's method that if
we replace the condition 1 by the condition

\ L) —p

P

(but  preserving condition 11) then there exist more than C(a,e)e posi-
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tive integers n < x for which
finti)
Folnti—1)
This theorem follows eagily from the following stronger theorem.
TaEorREM 1. Let f(n) be an additive function, satisfying the following
conditiois
1. M(If(p)l2/p) is convergent, where |f| denotes f(p) for [f(p) <1
P
and 1 for [f(p) =>1.

2. There exists a nwmber ¢, such that, for any integer M >0, the set
of numbers f(N), where (N, M) = 1 is dense in (¢,, o).

& <e (¢=1,2,...,h).

Then, for any given sequence of h real nwwmbers @y, dyy ..., @y aitd
e > 0. there ewist more than C(w,e)r positive integers n < x for which

(1) [fnti)y—fn—i—1)—w| < e (i=1,2,....4h);

C(a, &) is a positive constant, depending on & and a,;.

LEania. There exisis an absolute constant ¢ such that the number of
the integers of the form pq > x for which one can find n < x satisfying
n =b(moda), » =0 (modp) and n--1 = 0 (modg) is for @ > z,(a) less
than cx/a.

Proof. Tet ¢,,¢,,... denote absolute constants. Assume p > o'
(g = #"* can be dealt similarly). Denote by A4,(z) the number of integers
of the form pg satisfying

pg>o, @ <p <t n=b(moda), pin, gn+1,
for some n, 1 <n <y,

and by A;(z) the number of integers pg for which

_iak T | al+1 i
BT L p <, ¢, a=Db(modae), pn, gn-+1,

for some n, 1 =< n << z.
Clearly A;(x) = A;(#) and it will suffice to prove that for x > w,(a),
D A;(x) < ex/a.

i=1

Define positive integer I, by the inequality
1
ok > —logay > 2%,
@

The number % of integers n satisfying

(2) n<wx n=0>b(moda), n =0 (modp), g < p < L
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@
for an I = [, does not exceed Y ([_] +1), thus by theorems of

‘T 9Lz p &
r=p=E o
Mertens and Chebyshev
7 o, . Cal

and by the definition of I,

Denote the numbers satisfying (2) for an [ =1, by a, < a, < ...
< 4, < ®. Since for all y <@, »(y) < ¢loge/logloge (from the prime
number theorem or from more elementary results), we have

“.

e cglogam Cs
3 Y‘A’ r) = Y;r ) <= B o A - bd
e ;ﬁc 148} = ) logz loglogws a

for # > #,(a).

For 1<1, denote numbers satisfying (2) by af < af < ... < af).
Similarly as for & we have for k; the inequality
Cqitt Cal
by < —— +——
a2t loge
hence by I < I,

6.
(4) < .
We shall prove that for I < I, and sufficiently large z
kp
, = _ (]
(5) Ai(e) = Y mlaP+1) < =

i=1
where v (m) denotes the number of prime factors > &' of .
For this purpose, we split the summands of the sum (3) into two
classes. In the first class are the integers af’ for which »(al¥+1) < 24,
From (4) it follows that the contribution of these integers al? to (5) is less
than ez/al’. The integer in the second class satisfy »(a®+1) > 2'/1%.
Thus these integers are divisible by more than 2'/1* primes ¢ > #"* ",
Thus the number of integers of the second class is less than

12412
m( F &
A g 1 2N, _ o)™ ek,
[24ey '[:2]' al2'/12]! [t;]

. [ 2logx ]!< x
- aloglogz | ~ a-4*
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for 1 > ¢, @ > x,(a). By definition, »(al¥ +1) < 2141, Thus, for I > ¢,
the contribution of the numbers of the second class to (5) is < @/a 2",
for I < ¢, the contribution is clearly < 27072, Thus, for I < 1, & > @,(a),

Ay (2) < czw/al?

and in view of (3) we have for z > x,(a)

, X g it eir
Ajlw) < — + Z = <
- @ = @ a

e

which proves the Lemma.
Proof of the theorem. Let & be a positive number and let

a sequence a; (¢ = 1,2, ..., }) be given.
By condition 2 we can find positive integers Ny, Ny, ..., N, such

that

6) (Ney(h+1)Y) =1 (i=0,1,...,4), N,N)=1 (0<s<j<h),

F(Ng) > eyt max [f(i+1)— Y a}

1=sis<h
and
f.f(ﬁ's}—{f(.\'n)—f(f---1)—'i1a¢} e [LEi<hy
hence -
(7) FlE=1)N)—fGN, ) —a; <}e (A <i<h),

Let k, be the greatest prime factor of Ny N,...N,. Put u =

e/V96he (¢ is the constant of the Lemma). By eondition 1, 3 (1/p)
f@)iz=n

is convergent. Since M(1/p”) is also convergent, there exists a ks

such that

2’1 1 11 1
" P L BhEl)
[F0) = >k
p=hke

Finally by condition 1 there exists a &, such that

v el €

/ '_F-._\__ T __;_-
‘.fi;’}_'_"i#‘ P 418h
=iy

(9)
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Let us put

E=max(ky. ks ky)e NV = N, N, Ny, P:np, Q = (h--1)IN°P

p<k
YN

and let us consider the following system of congruences
n=1mod(h—1)!P), n = —itN;(modN3), 0 <i<h.

By (6) and the Chinese Remainder Theorem there exists a number n,
satisfving these congruences.
It iz easy to see that
(10) for every integer t the numbers (Qt—ny+4)/(i+1)Ni (¢ =1,2,..., k)
are integers which ave wot divisible by any prime < k;
(11) the wwmber of terms not evceeding x of the avithwetical progression
Qt - ny is 2/Q-+0(1).
In ovder to prove Theorem 1 we shall estimate the number of infe-
gers n of the progression Qt - n, which satisty the inequalities
2
(12) n <. _,\.:[f(u—'s’}—-j'(u = 1) —fl(IE 1) N[N ) > ie
i=1
We divide the set of integers n = u, (mod¢)) for which the inequalities
(12) hold into two classes. Integers n such that n(n—1)...(n-+h) is
divisible by a prime p > & with |f(p) = u, or by p°. p >k, are in the
first class and all other integers are in the second class.
(13) The number of integers n < a, n = r (modQ) which are divisible by
a given integer d >0 is equal o x/dQ —0(1) for (d,Q) =1,
hence the number of integers n < xz, n = n, (mod@) of the first class is

less than
(}a+1)a’ _\:' ; ek ! )—0( Zl-r Z )

.R' J’“:-.r pr+h ,.. =x+h
mw o

By the inequality (3) and the definition of & this number is less than
b Qo).
For the integers of the sccond class, by remark (10) we have

k
D7 N f =) —f(r =i =) —=F((i— 1) N+ X))

It i=1 \
—5=Y' M ¥iw- Y o),

I i=1 pin-—i prfi—1
B=k =t
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where Y’ means that the summation runs through the integers of the
second class. In view of remark (13), since (@,p) =1 we have

8 < 2 - fof
n=ng(modQ) fu-l pip—i-1
n<zx Pb—k mpl!c,u o>k, 0 <p
2haz
= ¥ rogr+ow)+
z+h=p=k P
Hoi<s
R
| nEnD(ZmaQ)igl:l paji- éizwi f(p)f(q) |
n=® ) <, ()] <2t
w2 N jofe-2z Y o))
pein+i—1 q>p=k p;n-.-i.qimhl,q:-k
(D)l <p, Hq) <u o=k, [f(p)|l<p, f@)l<p
1
2ha v flp) ™ =
<= TR M M2 N i@+
Q pokimmy<u L Q) 1 Q-
A nmitg(mod Q) fm=1 pin—+i,gn+i-1
A=t pa=z, p;»i axk

(D)) <, 1H@)] <u

(Zf“(p)T Y wf@)-

o >q>k, pa<z—h
(o) <p |f(19)|<p 1@)i<u

Thus finally from (9), Lemma, the equality u® = ¢*/96he and from the
fact that the number of integers of the form pg not exceeding @+ h is
o(x), we get

2

£ @
S<——+o(o
= g Tow
Thus the number of integers of the second class is less than ja/Q--o(2).
Henee there exist less than ;;a:jQ —o(x) positive integers »n < =,
#n = ny (mod)) for which

Z(f(%—%) —fln+i—1)—f((i-+ 1) N} F(iN L)) > ke

a1

Therefore by (11) there exist more than 1z /Q--o(x) positive integers
n < @, for which

h
D [fns i) =t i—1) = (- 1) ¥~ f(iNea)) < 36
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and then
|f(n+8)—Ffln+i—1)—FG+1)N)+FEN_)| <3e (i=1,2,...,0h).
In view of (7), the proof is complete.
THEOREM 2. Let f(n) be an additive function satisfying the econdi-
tions of Theovem 1 and such that partial sums of X(/f(p) _:r;) are bound-
ed:

(14) A>18, =) I @I

Pk ¥
Then for any given natural number h theve exists a number ¢;, sueh thai
for any &€ >0 and every sequence of h numbers: a,, a,, ..., @y = ¢y, there
exist more than C(a, e)a positive inlegers w < x, for which

(15) flnt+i)—a| <e (E=1,2,...,Fk).
C(a, ) 18 a positive constant, depending on e and a;.

Proof. Let ¢ be a positive number, ¢, = ¢;+maxf(i) and let a se-
quence a; =¢; (1 =1,2,...,h) be given.

By condition 2 we can find positive integers N,, N,, ..., N} such
that
(16) ("\Tr‘:h!):l ('3.':132!--'5}?'): (_;'\-"!._:_?\Tj-) =1 (1(?(}%5)
and
(17) WYV —a+f@) <3e (=1,2,...,h).
Let k, be the greatest prime factor of N, N,...N,. Let C be an absolute
constant such that

1 logz
vf—<010g : for all 2z >y >1.

2 .
vipes logy
Put x = £/7CV}h. By condition 1, > (1/p)is convergent. Since Y (1/p?)
[#(p)|=n
is also convergent, there exists a k, such that
) 1
(18) T Ly Yl o

7 ZJ p2 ﬁ

IHD) =, Py p p>ky

By condition 1 there exists also a k,; such that

el

P>y, (D)= p
Put 5 = ¢/V96h, B = A-1/3h and denote by I, the interval
[vp—39,vp+49], »=0,-1,42,..., +[B/y-+1]
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and let %, be the least integer & > max(&,, ky, ky) such that 3" (f(p)/p)
=k | 0) s .

e I, if such integers k exist, otherwise let k. = 1.
Now if Y (f(p)/p)el, —Dby the condition (14) and by (18) such
p<eh |f{(P)|<p
v, certainly exists—we put k, = & and then we get

\ n) | _
(20) \ _fUl <5, k< max k =15,
ity ¥ e
I“J"‘l‘f‘"

Let 3 denote that the summation runs through all primes

p, q satisfying conditions p >¢ >k, pg <o —h [f(p) < u, |f(@)] < n.
From (20) we get

o 2 N IRF@ ( % J_'{_P_))’ L R L
' prans ] (

— /]
wth=p & 1

1 < e a-h>0>—
"‘2_ {'" \" It \' &
S06h T L p p Li g
ek (r+het 'l-":“.‘!!--'-t-r .’a-—l)[_l"gl_l ® h}q»“Th
2 - ! £ &2
S ) 2(2‘_.._- L utee
o6n T H T L2 Teen T S o
Let us put N = N;N;...Np, P= [ P
p<k,p4N
(22) Q=wNP<u¥ [[ p=@
}f—‘:;I" PN

and let us consider the following system of congruences:

it =0(modh'P), u = —i+XN;(modN7).
By (16) and the Chinese Remainder Theorem there exists a number n,
satisfying these congruences.

It is easy to see, that
) . Qt-—ng-+1 :
23) for ervery integer 1 the wwmbers — N (t=121,2,...,h) are
LB
integers, which are not divisible by any prime << k.
Analogously, as in the proof of Theorem 1, we shall estimate the nuin-
ber of integors # of the progression Qf— i, which satisfy the inequalities

e
(24) n <, N(fe+i)—fUN)) > 1

=1
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We divide the set of integers #n = i, (mod@), for which the inequal-
ities (24) hold, into two classes. Integers » such that (n--1)(n—2)...
(n—+h) is divisible by a prime p >k with (f(p)| = or by p? p >k,
are in the first class and all others integers are in the second class.

By remark (13) the number of integers w < x, n = i, (mod@) of
the first class is less than

hf-( Z i_':_}:.lﬂ)_f)( \‘ T \j 1).

Q ;3:»5:,;1[;3]|;,up p=k p ;;s:-"T:fi 3,2;_.?;.
By the inequality (18) and the definition of & this number is less than

38/Q+o(@).
For the integers of the second class, by remark (23), we have

h 1 .
Nigmro—fanyp =3 Y fo)f

i=1 i=1 pun—ip=k
and

% h
ZE (Fn+0)—fEN)f = ”Z( 2 fw)

" i=1 pm-i p=k

where ' means that the summation runs through the integers of the

"

second class. In view of remark (13), we have
h

h
Y Suwca-svre XSS sof
" i=1 H-E"utnm:lf.i} i=1  pln—i, p=k

T

= 2 (k—&*” y)+2 Ny 2 on
2 Folg o ) +2 X i goow)
i =p _

hx Y f-’-(lp} 'f(.P}f{_q) |

) ?(P>k%|<ﬂ p 2 2 }T}‘I’

S rw+ Y wrw)-

p=it+h
Hw)i=u

Thus, finally from (19). (21) and from the fact that the number
of integers of the form pg not exceeding z--h is o(») we get

Z” v[f(n—f —fUN)f \; %—;-o(m}.
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Thus the number of integers of the second class is less than fwx/Q - o(x).
Henece, there exist less than 32/Q--o(z) positive integers n < z,
n = n, (mod Q) for which

&
N fon+D)—FEN)F > 1e.
Tl
By (11) and (22) there exist, therefore, more than Ju/@-o(x) positive
integers n = x, for which

I
PN r(n—e —fEN) < 1,

!
and then
fln+0—fEN) < ke (8 =1,2,..p B).
In view of (16) and (17), this completes the proof.
Theorem 2 is best possible. Assnie only that there exists an a and
a ¢ >0 so that the number of integers # <« satisfyng [f(n) < a is
greater than cu.

Then S’if_f’i converges and Y—f{p has bounded partial swins.
P

In the 1}31)(1 [2], P. Erdis proved (') the following theorem:

If there exist two constants ¢, and ¢, and an infinile sequence @, — oo
so that for every wx, there are ai least c,m; inlegers:

1< <a<... <y <oy, 1209,
for which
fla)—fla) < e, 1<i<j<l,

then

f(n) = alogn-—g(n), where Z f;ﬁ;‘j)”' Fom

In our case the conditions of this theorem are clearly satisfied and,
in fact, we clearly must have « = 0. This implies that
Vv IF@)”
i P

(!) The proof of Lemma 8 [2] is not clear and en p. 15 needs more detfails
similar to these given above.
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Assume now that >'(|f(p)|/p) does not have bounded partial sums.
Let eg. > (If(p)l/p) =4, A large. Then by the method of Turin
il

([6], ef. alslo [2]) we obtain

g
‘2 (f(n)— A < ¢z
=1
which implies that |[f(n)—A < A—a for all but #xx integers n < =,
where 5 = ¢;/(A — a)’. For sufficiently large A, it contradicts the assump-
tion that |f(n)| < @ has ¢z solutions n < @, thus the proof is complete.
In Theorem 1 one can replace D( f(p)’/p) < oo by: there is an
a so that if we put f(n)—alogn = g(n) then Z(Hg (P)I*/p) < co. We think
that here we again have a necessary and sufficient condition, but we
cannot prove this. In faet, we (onjectme that if there exist an « and an
¢ > 0 such that the number of integers n < @ satisfying |f(n+-1)—f(n)| < a
is > cx, then

f(n) = alogn+g(n)  with V —||—q—(p

§ 2. The proof of Theorem 2 is very similar to the proof of Lemma 1
of P. Erdos’ paper [1]. Using ideas and results from that paper we can
prove the following theorem.

THEOREM 3. Let f(n) be an additive function satisfying condition 1
of Theorem 1 and let > (1/p) be divergent, Z[!lf(p)"f-p) convergent,

flp)0
then the distribution f’.{{-'}b(;ﬂ)f??% of h-tuples {f(m—+1), f(m-+2), ..., f(m-+h)}
exists, and it is a conlinuous function.

Proof. We denote by N(f;ey,€s,...,¢;,) the number of positive
integers #m not exeeeding #», for which

fim+1i) =e¢, =1,2,...,k,

where ¢; are given consgtants.
It is sufficient to consider, as in [1], the special case in which, for
any «, f(p") = f(p), so that

fom) = D f(@).
|
Let us also consider the function fi(m) = > f(p). We are going

plm, p=k
to show that the sequence N (fi; ¢y, €y ...y €y) ;'[n' is convergent. For, if
we denote by A4;; (j < jo.) the squarefree integers whose prime factors
are not greater than k, and for which f;(4;,) > ¢;, we can see that the
integers m for which

felm+4)y =¢ (1=1,2,...,h)
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are distributed periodically with the period  [] A,;. Henee N(fy; ey,
1 li;;ﬁ.
Cay ...y €4)/n has a limit,

To prove the existence of a limit of N(f: ey, eq. ..., ¢p)/n it is suffi-
cient to show that for arbitrary ¢ > (0 there exists k, such that for every
k >k, and n > n(e)

| N(f; Crs Oy oeas 1) —N (fs Cis Casouny Cp)| 0 < &,
To show this, it is enough to prove that the nwmber of integers m < =
for which there exists 7 << 4 such that f,(m—1i) < ¢; and f(m-+1i) = ¢
or fp.(m—+1i) = ¢; and f(m-+ 1) < ¢; i8 less than ehn. But it is an immediate
consequence of the analogous theorem for 4 = 1 proved in [1], p. 123.
In order to prove that the distribution funetion is continuous we
must show that for every ¢ > 0, there exists a 4 > 0, suech that

A=N({f;e,—0,6,—08,...ie,—8)—N(fie, -0,0.+-68,...,6,+8) <e.
Now

h
1= 2‘4\'0; Ci T éq ---g(';_l‘;—é, f‘;—aq ceey ;,—6}—
i=1

—N(f56:+0, ...,6;+0,6,,—0,..., 64— 5)}

and by Lemma 2 of [1] each term of this sum is less than &/h for snitably
chosen 8. This completes the proof.

We conelude from Theorems 2 and 3 that if an additive function f

satisfies conditions 1,2, }' (1/p) is divergent and Z(;f(_p)-"/p) conver-
fp)#0
gent, then the distribution funetion of |f(m—+1),...,f(m+h)} exists,

is continuous and strietly decreasing on some half straight-line, thus
the sequence of integers n for whieh inequality (15) holds has a posi-
tive density. Similarly we can prove the following:

THEOREM 4. Assume that Y’ ; = oc and that 2‘ ['f(P)lf-
Jp 0
then {f(n+1)—f(n), f(n+2)— f((ﬂ)il),---_of."-*.k)—f(ﬂT'—J.)] Aas

a continuous distribution funetion.
It is easy to see that condition 2 c¢an be replaced by the conditions
lim f(p) =0 and Z I[f(p)| = oo.
P—00 7]

§ 3. Y. Wang proved in [6] that the number N of primes p < @
satisfying
perrt ) s, 1 EwE
¢(p+7)
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is greater than
x

aidy6) (logx)* *logloga -

By our methods we can obtfain in that case

N > la, &)

logz

After having passed to the additive function log(g(n)/n) the proof is simi-
lar to the proof of Theorem 1. We use the fact, that log(¢ (-n),h-a.) is always
negative, and apply the asymptotic formula for the number of primes in
arithmetical progression instead of (11) and the Brun-Titehmarsh theo-
rem instead of (13).

We can also prove that there exists distribution funetion N (¢, ¢s,...,6)
defined as

1 g@+v)
lim ——— N(p < a; - =g, == 0@ kY
S D) (p H P 3 } 3 &1 ) k)
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