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1 . INTRODUCTION

It is our purpose to show how the convergence fields of certain regular Toeplitz
matrices can serve as neighborhoods, in the topologization of a factor space of the
space m of bounded sequences . We use two simple ideas : the principle of aping
sequences, and the construction of Toeplitz matrices whose convergence fields are
nontrivial but (in the sense in which this is possible) arbitrarily small .

The basic idea of the principle of aping sequences was introduced independently
by Agnew [l, Theorem 4 .1] and by Brundno [2 ; But Agnew announced the principle
only in a specialized form ; and Brundno, who showed great skill in developing elab-
orate and highly fruitful applications, failed to make the principle explicit . Roughly,
the idea can be stated as follows : If a Toeplitz matrix A is regular (or, more gen-
erally, if it has finite norm and if all its column limits exist), then it transforms
each pair of fairly similar bounded sequences into a pair of fairly similar bounded
sequences . Naturally, the expression "fairly similar" must in this context be defined
in terms of the matrix A .
Terminology and Notation. By A = (a nk) and B = (b nk) we denote either Toeplitz
matrices or the transformations which they represent. By a sequence

x = {Xk l = {x(k)j

we mean a sequence of complex constants, and by Ax the sequence Iico0ankxk}n=o
that is, the transform of x by A . Our matrices are regular, and the symbol Ax will
never be used except where it is meaningful . If the sequence Ax converges to the
number a, we write Ax a, and we say that A evaluates x to a .

The statement x - y will mean that there exists a nonzero constant X and a con-
vergent sequence c such that y k = "~x k+ c k ' Clearly, the relation y - x is an equiv-
alence relation; we denote by m/L the space of equivalence classes which it deter-
mines in m, and we use the letter X to represent the equivalence class to which x
belongs. If x - y, then Ax - Ay, for every regular matrix A ; we therefore use the
symbol AX to denote the equivalence class to which Ax belongs . The set of bounded
sequences evaluated by A is called the convergence field of A in m (or the bounded
convergence field of A) . By an immediate extension, we can speak of the convergence
field of A in m/L .

If f k rl is an increasing sequence of positive integers, we say that f4l wanders
slowly over fk r } provided

lim

	

max

	

I (k) - (k r ) ( = 0 .
r-m kr<k r+i
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If ~ wanders slowly over {k r } and n wanders slowly over {n,}, and if

~(k r ) - 71(n r)' 0,

we say that ~ and rl are {kr, n,}-similar. We say that y apes x (boundedly) over
{kr } provided there exists a (bounded) sequence ~ wandering slowly over {k r } and
having the property that {yk - xk~k} converges. The sequence g is called an aping
factor of y, relative to x . (For an extensive development of related ideas, see
Zeller [13] .)

(1)

(2)

Figure 1 .

2. THE PRINCIPLE OF APING SEQUENCES

lim
r-

Whenever the discussion is re-
stricted to regular Toeplitz matrices
and bounded sequences, it may be as-
sumed, for all our purposes, that the
matrices are row-finite. More gener-
ally, it may be assumed that the non-
zero elements of each matrix lie in
rectangular blocks arranged in such a
way that no column and no row meets
more than two of the blocks (see Figure
1). To make this clear, let A be a
regular matrix ; let ko = 0 = n o , and let
k l be any positive integer . An elemen-
tary step-by-step process yields inte-
gers nl, k 27 n2, k 3f n3 , . . . such that {k r I
and {n r} are increasing sequences and

max

	

El + E

	

I ank I= 0
nr<n<nr+l k<kr k>kr+2

(see also [3, Theorem 3] . We call the set of elements a nk that occur in the right
member of (1) the {kr, n,}-trim of A, and we paraphrase the relation (1) by saying
that the {k r, nr} -trim of A tends to 0 . Clearly, if A' is obtained by replacing by
0 each element that occurs in the {k r , nr }-trim of A, then (A - A')x 0, for each
x E M .

THEOREM 1 (Principle of Aping Sequences) . Let A be a regular matrix, and
let {kr , n r} be a sequence of index pairs such that the {kr, n r}-trim of A tends to
0. Let X E m, and let yk = xk~k + ek , where ~ is bounded and wanders slowly over
{kr }, and where ck -&, and let s = Ax, t = Ay . Then t has a representation
to = sn rln +y n , whereyn - a!, where the sequence q wanders slowly over{nr}, and
where ~ and rl are {kr , nr }-similar .

To prove the theorem, we write, for nr < n < nr+1,

to -

	

ankYk + ~(kr)

	

ú

	

ankxk +

	

ank[e(k) - ~(kr)]xk
k<kr

	

kr<k<kr+2

	

kr<k<kr+2

+

	

ankCk + E ankyk = S1 + S2 + S3 + S4 + S5 .
kr<k<kr -2

	

kikr
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As n - , S l and S S tend to zero, since y is bounded and (1) is satisfied ; together
with the regularity of A, condition (1) implies further that S 2 - ~(kr)sn 0 and that
S4 a ; the hypothesis on ~ and the boundedness of x imply that S 3 --> 0. This com-
pletes the proof . A special case of the theorem was proved by Agnew [l, p . 98] .

By way of an immediate application, we give a brief proof of Brudno's famous
theorem : If A and B are regular Toeplitz matrices such that the bounded conver-
gence field of A includes that of B, then A and B are consistent in the space m.
(See [2, p . 198]; see also Mazur and Orlicz [7, Theorem 6] and [8], and Zeller [13,
Theorem 6.4] .)

There exist increasing sequences {k r} and {n r } such that the {k,, n r }-trims of
A and B both tend to 0 . If A and B are not consistent in m, there exists an x E m
such that Ax

	

1 and Bx

	

0. Now let ~ be a bounded sequence wandering slowly
over {kr}, with ~(k r) = sin

	

; then B evaluates the sequence {xk k} to 0, while A
transforms {xk~k} into a sequence which oscillates slowly between 1 and -1, con-
trary to the hypothesis that A D B in m. We point out that this is essentially Brudno's
proof [2, pp . 198-205], also the proof given by Petersen[ 9] .

Theorem 1 can be modified so that it yields the following theorem of Darevsky [4]
(see also Copping[ 3, Theorem 5] and Zeller [12, Theorem 7 .1], [13, Theorem 9 .1] ) :
If A is a regular Toeplitz mat-ix which evaluates a divergent sequence, then A
evaluates an unbounded sequence .

To see this, suppose that x is a bounded divergent sequence, and let A denote a
regular Toeplitz matrix which evaluates x to 0 . A decomposition of the sum
Zankxk~k analogous to (2) shows that if k - '0 slowly enough, then A evaluates the
unbounded sequence {Mk} to 0 .

3 . THE CONSTRUCTION OF SMALL CONVERGENCE FIELDS

THEOREM 2 . Let x and a denote a bounded divergent sequence and a complex
number, respectively, and let {kr } be an increasing sequence of integers such that
x(kZr) - a and x(k 2,1) - íI (a # a, R # a, a

	

Then there exists a regular
Toeplitz matrix A such that

(i)

	

Ax - a,

(ü)

	

Ay converges if and only if y apes IXk- a} over {kr I ,

inf I annl > 0, and ank = 0 whenever k > n .

Condition (iii) can be paraphrased by saying that A is "strongly normal ." To-
gether with the regularity of A, it implies that A has a unique inverse which is also
strongly normal .

In the proof of the theorem, we deal with the special case where a = 0 ; the gen-
eral case can be reduced to this by dealing with the sequence {xk} _ {x k - a} . We
also suppose that, for all r,

I x(k2r) - a I< Y,

	

I x(k2r+1) - Q I< Y,

where y = la - 01/4 ; the condition is always satisfied when r is large enough, and
the exceptional cases can be removed by deleting the corresponding elements from
{kr } . Similarly, it may be assumed that lx(k2r)l > la I/2 for r > 1 .
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For k < k 2 , let the kth row of A be the kth row of the identity matrix . Corre-
sponding to each k > k 27 let p (more precisely, pk) denote the greatest of the integers
k2r (k2r < k) or k2r+1 (k2r+1 < k), according as the inequality I Xk - a I > I xk - R
does or does not hold . Let the kth row of A be defined by the rule

akp = xk/(xk - Xp),

	

akk = - xp/(xk - xp),

	

akh = 0 (h # p, k) .

Since x is bounded and I Xk - xp I > y for all k > k 2 , the matrix A is regular and
satisfies condition (iii) . Inspection shows that (i) holds .

To establish (ü), suppose first that A = xk~k+ ck, where { ck} converges, and
let Ay = t . Then, with p = pn ,

tn = [X,,(XP ~p + Cp) - Xp(xn~n + C n)1/(Xn - xp)

_ [xnCp - X pCn + Xnxp(~p - n)) /(xn - xd ;

this shows that A evaluates every bounded or unbounded sequence y which apes
{Xk - a} over {k r } .

Suppose, on the other hand, that t = Ay

	

0 (if Ay - b # 0, we can deal with the
sequence {yk - b}) . We shall construct a sequence ~ such that y apes x over {k r }
with the aping factor ~ . By hypothesis, t(k r ) --+ 0, that is,

x(kr)Y(kr -1) - x(kr-1)Y(kr)

	

0 .

Since the sequence {x(k r)} is bounded away from zero, this suggests the choice
~(kr ) = y(kr)/x(kr), for r = 3, 4, • • • , and it remains only to supply the remaining ele-
ments of I ~k} . We now write 4k = yp/xp (k k l , k2 , . . . ; p = pk ) ; then, from the re-
lation

tn = xp(xn~n - Yn) /(Xn - X~ (P = Pn)

and from the hypothesis that t o - 0, it follows that xk~k - Yk' 0. Since each Pn is
one of the two largest indices k r which are less than n, wanders slowly over {k r},
and the proof is complete .

THEOREM 2' . If the hypothesis a o a is removed from Theorem 2, the theorem
remains valid provided (ü) is replaced by the weaker statement

(ü')

	

each sequence evaluated by A apes {x k - a} over {k r} , and A evaluates
each bounded sequence that apes {xk- a} over {kr} .

In the proof, it may be assumed that Q = a = 0 and I x(k2r ) I > I a I/2 ; for each
case can either be reduced to this, or it is covered by the proof of Theorem 2. If k
is one of the integers k2r+1, we define the kth row of A by the rule

akk= L

	

akh =0 (h#k) .

For r = 2, 3, - and k2r-1 < k < k2,+1, we define

a(k, k2r -2) = x(k)/x(k2r-2),

	

a(k, k2r-1) _ -x(k)/x(k?r-Z,

	

a (k, k) = 1,

a(k, h) = 0 (h# kZr-2, k2r-1 , k)

The remaining details of the proof are mechanical, and we omit them .
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THEOREM 2" . Let x and a denote a bounded divergent sequence and a complex
number, respectively ; and let {k r } be an increasing sequence such that x(kZ r )

	

a
and x(k2r+1)

	

R (a # Q) • If x(k2r+l) - Q = O(1/r), there exists a regular Toeplitz
matrix A with the properties (i), (ü), (iii) in Theorem 2 .

The theorem can be proved by means of the matrix which has just been described .
In proving the second part of (ü), we use the following fact : If yk = xk~k, where
wanders slowly over {kr}, then the hypothesis on {x(k2r+l)Î implies that
y(kZr+1) = 0(1) .

To facilitate the comparison of Theorems 2, 2' and 2 ", we point out the following
differences : Theorem 2 requires that the value a to which the sequence Ax is to
converge be different from each of the two limit points a and 0 of x. Theorem 2 "
replaces this condition by the requirement that x(k2r+l) - Q fairly rapidly . Theorem
2' simply omits the condition ; but it fails to guarantee that A evaluates all unbounded
sequences that ape x over {k r } .

We now turn our attention to the case where the sequence x converges . If
xk - 0, and if k r - • ' sufficiently fast, then every sequence which apes x over {k r }
is convergent. Therefore the case of nullsequences carries little interest . All other
cases can be covered by dealing with the sequence x = {1} _ {1, 1, • • • } .

THEOREM 3 . If k r -0, there exists a regular row finite Toeplitz matrix
which evaluates some bounded divergent sequences, and which evaluates no sequence
that does not ape {1} over Ik r } .

The theorem can be proved by means of a construction much in the spirit of what
has gone before . We shall not discuss the details. Instead, we point out why Theorem
3 can not serve our purpose of providing neighborhoods of the equivalence class C of
convergent sequences : if A is a regular Toeplitz matrix and if h r ' fast enough,
then (by the principle of aping sequences) A evaluates no bounded divergent sequence
which apes {1} over {h r} .

4. A PROBLEM OF STEINHAUS TYPE

If A is a regular Toeplitz matrix, if the sequence x consists of alternate blocks
of 0's and l's of lengths Ll, LZ , - 1 and if L r oo rapidly enough, then Ax does not
converge [11] . In a private communication, Agnew asked whether there exists a
regular Toeplitz matrix that evaluates some bounded divergent sequences but evalu-
ates no divergent sequences of 0's and l's. The preceding section clearly gives an
affirmative answer, as does also the matrix Z 3 of Silverman and Szasz [10, p . 347] ;
but the following theorem makes an even stronger assertion .

THEOREM 4 . There exists a regular Toeplitz matrix A which evaluates some
bounded divergent sequences and has the following property : If Ay 0, then the set
of limit points of y is either the origin, or a circular disk centered at the origin, or
the entire plane .

To prove this, let x be a sequence whose set of limit points is the unit disk, and
let {k r } be a sequence of integers such that each point in the unit disk lies at a dis-
tance less than 1/rz from the point set {xk} (k r < k < .k r-l) . By Theorem 2, there
exists a regular Toeplitz matrix A such that Ay 0 if and only if yk = xk~k where
~ wanders slowly over {kr} . The remainder of the proof is tedious, but trivial, and
we omit it .
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If A is a regular Toeplitz matrix which evaluates at least one bounded divergent
sequence, then the convergence field of A in m/L contains nondenumerably many
points . On the other hand, if x and y are two bounded divergent sequences such that
every regular matrix that evaluates x also evaluates y, then X = Y (by Theorem 2 ;
see also Erdös and Rosenbloom [5]) . This suggests the possibility of using conver-
gence fields as neighborhoods, in the topologization of m/L .

From the remarks at the end of Section 3 it is clear that, in any topologization of
m/L by means of convergence fields of regular Toeplitz matrices, the equivalence
class C of convergent sequences emerges as a discrete point . We shall therefore
deal with the space m/L - {C} .

The following theorem implies that if the convergence field in m/L - {C} of each
regular Toeplitz matrix is admitted as a neighborhood of each of its points, then
every point in m/L - {C} is a discrete point .

THEOREM 5 . If x is a bounded divergent sequence, if the elements of the se-
quence {krI are sufficientty far apart, and if a and b are two constants (a # b),
then no divergent sequence y (Y # X) apes both {x k - a} and {x k - b} over {kr } .

To prove this theorem, let a and 0 be two distinct limit points of x, and suppose
that k r "w, x(k?r)

	

a,
x(kzr+1 ) - R • Suppose that

yk = (xk - a) k + pk

	

(x k - b)?Ik + qk ,

where a :f b, pk p, qk - q, and where ~ and q wander slowly over {k r} ; clearly,
both ~ and i7 are bounded if and only if y is bounded .

Suppose first that y is bounded, and let IQ be a subsequence of {k r} such that
J~(h s )} and 177(h s)} converge to limits u and v, respectively . We may assume that
when kr = hs , then r and s have the same parity . This gives the relations

5. THE TOPOLOGIZATION OF m/L - {C}

lim y(h 2s ) _ (a - a)u + p = (a - b)v + q,
S --.a0

lim y (hzs+1 ) _

	

- a)u + p = (f3 - b)v + q,
s _co

from which we deduce, successively, that

(a -R)u=(a -R)v,

	

u=v,

The last equation shows that ~ and n can not have any limit point other than
(p - q)/(a - b), and therefore that x - y .

If y is unbounded, there exists a sequence Ih s } such that ~(hs ) ~co and
77(h,)

	

-o . Clearly, ~(hs)/a7(hs) - 1, and it follows that

(a -a)((3-b)=(a -b)(6-a),

in other words, (a - b)(a -0) = 0. This completes the proof .
Theorem 5 implies that if the space m/L - { C} is to have no discrete points,

then the set of Toeplitz matrices whose convergence fields in m/L - { C} are

u = (p - q) /(a - b) .
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admitted as neighborhoods must somehow be restricted . On the other hand, the
principle of aping sequences entails the following proposition .

THEOREM 6 . If S is a system of mutually consistent regular Toeplitz matrices
such that each bounded sequence is evaluated by some A in S, and such that to each
pair of distinct points X and Y in m/L - { C} there correspond two matrices A and
B in S whose convergence fields in m/L - { C} are disjoint and contain X and Y,
respectively; then the system S can be enlarged to a consistent system S* whose
convergence fields determine a Hausdorff topology without discrete points, in
m/L - {C} .

That each point X in m/L - { C} has at least one neighborhood U(X) follows di-
rectly from the first part of our hypothesis. If U(X) and V(X) are any two neighbor-
hoods of X, determined by matrices A and B, we form the matrix whose (2n)th and
(2n + 1)st rows are the nth rows of A and B, respectively (n = 0, 1, • • • ) ; then this
matrix determines the neighborhood W(X) = U(X) n V(X) . That every neighborhood
is open is a tautology. Finally, the separation axiom is the substance of the second
part of our hypothesis . We shall now use Theorem 6 to give two proofs of the follow-
ing proposition.

THEOREM 7. There exists a system S of regular Toeplitz matrices whose
bounded convergence fields determine a Hausdorff topology without discrete points,
in m/L - {C} .

Our first proof will be very direct ; but it will allow no choice in the topology of
the space. The second proof will be based on an unproved set-theoretic hypothesis ;
but it will permit a free choice, at each of 2 N0 stages, in the sense that the value to
which a sequence x shall be evaluated by the matrices in S which evaluate it can be
chosen arbitrarily (in fact, the proof can be arranged in such a way that the free
choice applies to each of 2 N0 sequences of 0's and l' s) .

The first proof. For any bounded divergent sequence x, let K(x) denote the core
of x, that is, the least convex set (in the Cartesian plane) which contains all limit
points of x . There exists a unique circular disk of minimum radius which contains
K(x) in its closure . We call the center p(x) of this disk the center of the sequence .

For each x (X E m/L - { C 1), there exists a sequence { k r} such that if k wan-
ders slowly and boundedly over {k r}, then the sequence {y kJ ={[xk- p(x) ]~ Id has
the center p(x) . By Theorem 2, we can construct a system S of regular Toeplitz
matrices, each with the property that if it evaluates a bounded divergent sequence z,
it evaluates it to p(z) ; moreover, the system can be made both extensive and refined
enough so that it satisfies the hypothesis of Theorem 6 . (For an example of a system
of mutually consistent matrices whose collective convergence fields cover the space
of real, bounded sequences, see Goffman and Petersen [6] .)

The second proof. We shall need the following lemma, which has some indepen-
dent interest .

LEMMA . If A is a regular row finite Toeplitz matrix which does not evaluate
the bounded sequence x, then there exists a sequence {krI such that A evaluates
no divergent sequence which apes x over { kr} .

Let Ax = t, and let { m s } be an increasing sequence of integers such that
t(m2 s ) - a, t(mzs+-1)

	

R (a # Q) . There exists a sequence {kr , nr } of index pairs
such that { n r } is a subsequence of { m s }, such that the { k r , nr}-trim of A tends
to 0 so rapidly that the quantity under the limit sign in equation (1) is O(1/r), and
such that t(n Zr )

	

a and t(n2r+l) - 0 . Now let y be any sequence such that
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Yk - xk~k, where ~ wanders slowly over { k r } . Then Ay can not converge unless
k ---> 0 .

To return to the proof of Theorem 7, suppose that the set of points in m/L - { C}
has been well-ordered into a transfinite sequence { X a} (0 < a < ~v, where w denotes

the first ordinal of cardinality 2 00 ) . Corresponding to X 1 , we choose any matrix A l
which evaluates X, (if we wish, we can think of the choice as being made mechani-
cally by some well-ordering mechanism) .

Suppose now that regular matrices Ac, have been chosen for 0 < a < 0, and that
their convergence fields in m/L - { C } are disjoint . Also, let X denote the first
point in m/L - { C } which is not contained in the convergence field of any of these
matrices; let x E X, and let p denote any complex number . By our lemma there
exists, for each a < (3, a sequence { k r (a) }r° 1 such that no divergent sequence aping
{ xk - p} over { k r (a) } is evaluated by A a . We now state our unproved set-theore-
tic assumption; it is clearly a consequence of the continuum hypothesis .

HYPOTHESIS . Let K denote a family of fewer than 2 00 increasing sequences
{ kr } . Then there exists a sequence { hs } with the following property : if { kr} E K,
then at most finitely many intervals h s < h < hs+l contain more than one of the
numbers kr .

Under the hypothesis, Theorem 2' permits the construction of a matrix AP whose
convergence field contains the point X but meets the convergence field of none of the
matrices Ay (a < 0) . Therefore, we can construct a system S = {Aa} (0 < 0 < W)
of disjoint convergence fields which cover the space m/L - {C} . By Theorems 2'
and 6, the system can be extended so that it has the property stated in Theorem 7 .

6 . SOME PROPERTIES OF m/L - { C} .

We shall now assume that the space m/L - { C } has been topologized by a sys-
tem S such as was constructed in the preceding section, and we shall exhibit some
topological properties of the space .

THEOREM 8 . If A is a regular Toeplitz matrix, its convergence field in
m/L - { C } is a closed set .

COROLLARY. The neighborhoods in m/L - { C} have no boundary points .
The theorem follows immediately from the lemma in Section 5 .
THEOREM 9 . If E is a neighborhood of a point X in m/L - { C } , there exists a

family {Ef} of neighborhoods of X (where the index f ranges over all real numbers
in [0, 1]) such that E f c Eg c E whenever 0 < f < g .< 1, and such that each Ef con-
tains an open set which meets none of the sets E g (g < f) .

For an intuitive picture of the family {E f }, one may think of a nested system of
2 00 disks Da with the following property: each disk D a contains an open set which
meets none of the disks DR (0 < a) .

To prove the theorem, let {k r} be a sequence determining a neighborhood of X
which is contained in E . First we construct a family of subsequences {kfr } of {k r }
with the following property : if g < f, then {k gr} is a subsequence of {kf r }, and
{ kfr } contains arbitrarily long blocks of elements that do not occur in { kgr} .

Let each number f in (0, 1] be represented by a dyadic symbol O .a,a2 • • , where
infinitely many of the ai are equal to 1 . Let the sequence { k r} be divided into
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consecutive sections of 1 2, 2', 38 , 4 16 , - •- elements, respectively. The sequence
{kfr} is then built, section by section, the elements of its pth section being taken
from the pth section of { k r } .

We regard the pth section of { k r} as its own subsection of first rank. We
divide it into p equal sections, called the subsections of second rank ; this process
is continued until we arrive at p Zk subsections of rank 2k ; each of these consists of
p elements .

The terminating dyadic fraction f p = O.al . . .ap represents one of 2P possible
numbers. If f P has the least possible value of a dyadic fraction of p digits, we de-
clare that the pth section of {kf r} shall consist of the first element of the pth sub-
section of rank 1 ; more generally, if f P has the jth of the 2 P possible values, then
the pth section of {kf r } shall consist of the p1 -1 initial elements of subsections (of
the pth section of { k r}) of rank j . Clearly, each of the sequences { k f r} then deter-
mines a neighborhood Ef of X, and the family {E f } has the required monotonicity .

To complete the proof, let f be any fixed number in [0, 1] . Clearly, there exists
a bounded sequence ~ which wanders slowly over { kf r} but does not wander slowly
over any sequence {k gr} with g < f. In other words, there exists a sequence y
which apes a sequence x (x E X) over { kfr } , but does not ape it over { k gr } if
g < f . Finally, the sequence {kor} determines a neighborhood of Y which meets
none of the neighborhoods E g (g < f), and the proof is complete .

THEOREM 10. If E is a neighborhood of a point X in m/L - { C}, there exists
a family {Ef} (0 < f < 1) of neighborhoods of X such that each of the sets Ef con-
tains an open set which meets none of the sets E g (0 < g .< 1, g# f) .

The proof is similar to that of Theorem 9, except that the family of sequences
{ kfr} must be constructed in such a way that each of the sequences contains a se-
quence of long blocks of elements such that no other sequence of the family { kf r }
contains infinitely many elements from these blocks . We omit the details.

THEOREM 11. Every open set in m/L - { C} is the union of 2 00 disjoint open
sets .

Let E* be an open set in m/L - { C}, and x a sequence such that X c E* . Let
{kr } denote a fixed sequence which determines a neighborhood E of X (E C E*), in
the sense of Theorem 2; and let { Ef} denote the family of neighborhoods of X con-
structed in the proof of Theorem 9 . Let the subsets Gf (0 < f < 1) of E be defined
by the rule that, for each point Y in E .

Y E Go provided Y E Eg for all g (0 < g < 1),

Y E G, provided Y~ E g if 0< g< 1,

if 0 < f < 1, then Y E Gf provided

YE E g if f<g<1 and Y~E9 if O<g<f .

Clearly, the sets G f (0s f S 1) are mutually disjoint and cover the set E* .
To show that each Gf is open, suppose first that 0 < f < 1, and let Y denote any

point in G . Then there exists a sequence y = { xk k} (y E Y, x E X) which apes x
over { kgr if g > f but not if g < f . By the diagonal process, we can construct a
subsequence {h j} of {kgr } such that no divergent sequence which apes y over {h }
apes x over {kgr } if g < f . The sequence {h j} then determines a neighborhood A
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of Y which meets none of the sets E g (g < f) . Also, if z E Z (Z E H), then z apes x
over { kg,} whenever g > f, and therefore Z ¢ E g when g > f. This concludes the
proof for the case where 0 < f < 1 ; the modifications needed for the two cases f = 0
and f = 1 present no special difficulties .
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