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X1
Let xp X ) be a triangular matrix of real numbers in (-1,-}-1), -1

X00 < X00 < . . . < xn,, ) 1 . It is well known that the unique polynomial of

degree at most n-1, which assumes the values yk at x 0l)(1 k n), is given

by (the upper index n will be omitted if there is no danger of confusion)
n

	

w
(X)

	

n

yk lk (x)7 Ik (x)

	

(xk)(x
-xk)

	

CU (X)

	

(X- xi).

Ik (xk) = 1, Ik(xá)= 0 for 1 i n, i + k .

Let f(x) be a continuous function in (-1,-{-1) . Put
n

L,,(f(x))_1 yk Ik (x),k=1

i . e . L >t (f(x)) assumes the values f(xk) at xk (1

	

k n).

Let f(x) be continuous in (-1, + 1). A well known theorem of HAHN1
states that the sequence Ln (f (xo)) converges to f(xo) if and only if

n
(1)

	

1 Ik(x-)I < ck-1
where c is independent of n .

FABER2 first proved that for every point group there exists a function

f(x) continuous in (-1,+ 1) for which L.(f(x)) does not converge uni-

formly to f(x) in (-1,-{-1), FABER in fact proved that for every point group
n

(2)

	

lim max 2:11k(#==00 .-
n=ao -1 :5x:51 k=1

Actually FABER proved slightly more, he shoved that
n

max I I ;Ik (x) I > clog n.
-1 :5x:5~ 1k=1

1 H . HAHN, Über das Interpolationsproblem, Math . Zeitschrift, 1 (1918), pp. 115-142 .
2 G. FASER, Über die interpolatorische Darstellung stetiger Funktionen, Jahresb. der

Deutschen Math . Ver., 23 (1914), pp. 190-210.
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From (2) and (3) it does not yet follow that to every point group there
exists a point xo and a continuous function f(x) so that the sequence L"(f(xj)
does not converge to f (xo), or what is the same thing (by HAHN's theorem)
that there exists an xo (-1

	

x,

	

1) so that
n

(4)

	

lim l l ik (x) l = ~ .
n=co k=1

S. BERNSTEIN3 proved (4), and in fact he proved that for a certain xo
and for infinitely many n

7L

	

(_2(5) 2: 1Ik(xo)l >

	

-x-0(1) log n .

In the case of the Chebyshev abscissas

(6)

	

maxi

	

11k(x) I < 2 log n + O(1) .

Thus in some sense (5) is best-possible . (5) holds in fact for the Chebyshev
abscissas for every xo and infinitely many n .

In this paper we shall prove that for every point group (4) holds for
almost all x. In fact, we shall prove the following stronger

THEOREM 1 . Let s and A be any given numbers, and let n > no= no(s, A) .
Further let -1 x, < x2 < . . . < x. 1 be any n points. Then the measure
of the set in x (- oo < x < c-) for which

,z
(7)

	

1lk(x)I -- Ak=1
holds, is less than s .

Theorem I clearly implies that (4) holds for almost all x in (-1,+ 1) .
It is well known that (4) does not have to hold for all x in (-1,+ 1), in
fact, it is easy to see that there exists a Cantor set S so that for every x in S

(8)

P . ERDŐS

9L
Ik (x) 1 < c

/L=1

where c does not depend on n or x . To see this it suffices .áo start with the
roots of T.(x) and push two consecutive roots close together ; we suppress
the details which can easily be supplied by the reader . By slightly more
complicated arguments one can show that the set S can have Hausdorff
dimension 1 .

I S. BERNSTEIN, Sur la limitation des valeurs etc ., Bull. Acad . Sci. de l'URSS, (1931),
No. 8, pp . 1025-1050.
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By more complicated arguments we could prove the following stronger
THEOREM 2. Let n > no(A, c, #, 8) be sufficiently large, -1 - x, < x2 <

< x,, 1 . Then the measure of the set in x for which

I I Ik (x) - Ak=1
holds, is less than c/log n (c = c(A)) . Further if _ ~(F) is sufficiently small,
then the measure of the set in x for which

n
I I Ik (x) 1 :5 n log n
k=1

holds, is less than - .
The case of the Chebyshev abscissas shows that Theorem 2 is best-

possible . We do not give the proof of Theorem 2 since it is similar but more
complicated than that of Theorem 1 .

In a subsequent paper I shall prove that for every point group there
exists a point xo (-1 xo -1) so that for infinitely many n

1t
(9)

	

'y ~lk(xa)~ >? log n-c .
k=1

	

fu
In view of (6) (9) is best-possible .
Here the following question could be asked : For which distribution of

points -1 < xi < . . . < x,,

	

1 is
1t

max J j lk (x)-I=5;.xz~l k=1
a minimum? It has been conjectured that this point group X1, X21, -

	

X11 is
n

uniquely determined by the fact that all the n+1 maxima of Jlk(x)J
k=1

in (xi, xi+1) (0 i n + 1, xo = -1, x,,+, + 1) are equal . Denote the value
of this minimum by Un . We would further conjecture that for every other n
points in (-1,+ 1) (-1 x; < x2 < . . . : x z -_ 1) at least one of the n -}-1

n
maxima of lk (x) I in (xí , xí+,) (0 i n + 1) is less than U,, . The only

result I can prove in this direction is that at least one of these maxima is
less than n1í2.4

It might be further worth-while to formulate the following conjecture :
Let ~ zi I=: 1 (1

	

i

	

n). Then
1t

max I I lk (z}l
1zJ :51 k=1

is a minimum if and only if the zi's are the roots of z" = a, I a =1 .
4 P. ERDŐS, Some remarks on polynomials, Bull . Amer. Math. Soc ., 53 (1947), pp,

1169-1176, Theorem 2 (p . 1171).
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G. GRÜNWALD5 and J. MARCINKIEWIC6 proved simultaneously and inde-
pendently that there exists a continuous function f(x) so that the sequence of
Lagrange interpolatory polynomials L„(f(x)) taken at the Chebyshev abscissas
diverge for every x (-1 x 1). In fact, they prove that for all x (-1-x 1)
lim L,,(f(x))= m . In a subsequent paper I hope to prove the following result :

X(1)
Let xz1> 1 x22 be any point group . Then there exists a continuous function f (x)

so that for almost all x, lim Ln(f(x))= oo .
n=w

On the other hand, it is not true that there always exists a continuous
f (x) so that L„ (f (x)) diverges at all those x for which (4) holds. In fact, I
can construct a point group so that for every continuous function f (x) there are
continuum many points xo for which (4) holds and nevertheless Ln(f(xa))-, f(xo)
as n tends to infinity .

If (4) holds for every xo (-1 _ x,, :5 1), I can not decide whether there
exists an f (x) so that Ln (f (x)) diverges for every x (-1 _ x-:5 1) .

One final remark. It is not difficult to construct a point group so that
for every continuous function f(x) and every xo there should exist a sequence
nk (depending on f(x) and xo) so that

(10)

	

lim Lnk (AX 0)) , A X0)*
k=m

We can, in fact, construct a point group so that for every x .
n

(11)

	

lim

	

1 lk (xo) 1 = 1

which by HAHN's theorem implies (10).
The proof of (11) is easy, we just outline it . Let xl, . . ., xi, xi+2, . . ., x,t

be n-1 roots of T,,(x) and xi+1-xi = o (	
1 12 . Then a simple compu-

n (log n)
tation shows that for xi x xi+1

V.

P. ERDŐS

I Jlk(x)J - 1 +0(1)-k=1
1Now	I/2

	

thus it is easy to see that we can construct a point
n=1 n (log n)

group whose nth row is the above-modified Chebyshev point group and so

G. GRÜNWALD, Über die Divergenzerscheinungen etc., Annals of Math., 37 (1936),
pp. 908-918.

6 J . MARCINKIEWICZ, Sur la divergence des polynómes d'interpolation, Acta Sci . Math .
Szeged, 8 (1937), pp. 131-135 .



that every xo (-1

	

xp 1) should be contained infinitely often in a „short"
interval (xi, x;+,) and thus (11) follows .

Now we prove Theorem 1 . We put xo= - 1, x,,+ , = + l . Henceforth
c l , c, f . . . will denote positive absolute constants independent of E, A and n.
The points x (- - < x < oc) which satisfy (7) we shall call bad points ..
Thús we have to prove that the measure of the bad points is less than ~..
First we prove the following

LEMMA 1 . The measure of the bad points x which satisfy any of the
conditions

a) are not in (-1, + I),
b) for which min j x-xi j <,02n,

I:-k-n
c) which are in intervals (xi, xi+1) satisfying xi+I-xi > c lAle n,

is less than E/2 .
Let xo be a bad point not in (-1,+ 1). By interpolating r -1 on the

points x i (1 - i n) we obtain for all x

or

PROBLEMS AND RESULTS ON THE THEORY OF INTERPOLATION . I

X"-1 - ~ xk_l lk(x)
l~l

n

(12)

	

xó-1 < ~ Ilk(X-)1 •
k-1

Now if Ix,, j -1 -}- R , then xn -1 > A, or we have from (12) that for j x I ~ 1 -{- A/a
n

Ilk(x) I >A,
k-1

or if x(, is bad we have j x(, I < 1-}- A/n . Thus the measure of the bad points :
satisfying a) is less than 2A/n < c/6 for n > no .

By similar arguments we can easily show that the measure of the bad
points satisfying a) is less than c2/n2 . In fact, it is easy to show that the
measure of the points x outside (-l, -J-1) for which

max IIk(x)I < A,
I=k~_,,.

is less than c3/n'.
Since the number of the points x i is n -{- 2, it is clear that the measure

of the points in x satisfying b) is less than -/6 .
Now we have to deal with the bad points satisfying c) . Let -1 :!!E~; 9 :!~ 1 .

It is well known' that there exists a polynomial pn_ 1 (x) of degree at most

7 See e . g. P. ERDÖS and P . TURÁN, On interpolation. II, Annals of Math ., 39 (1938),
p. 712.
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.n -1 for which

(13)

	

pn _ 1 ( ) = 1, lp(x)) < min c4' n zJ

	

for
(

	

~)
Assume now that
(14)

	

min ~4-xk > c5A/n .
1-k-n

Then we obtain from (13) and (14)
,( 15)

	

j pn-1(xk) ~ <Á

	

(1 k n).

1 1 Ik (f) l > A,
A--1

P . ERDŐS

-1 :5 x :s 1 .

Thus from (15) and the identity p,, _ 1(')= 2: pn-1(xk)Ik(9) we obtain
k=1

n

,or a point 9 can be bad only if
(16)

	

min -xk

	

c5A/n .
1 :~5k=n

The number of intervals (xi , xi+1) satisfying x2+1-xi > c1A/En is clearly
less than En/c,A and thus from (16) the measure of the bad points satisfying
-c) is less than

2c,A En _ 2c5 E E
n

	

c1 A

	

cl < 6 '

if cl > 12c5 . Thus the proof of Lemma 1 is complete .
To complete the proof of our theorem we only have to prove that the

measure of the bad points not satisfying any of the conditions a), b) and c)
is less than E/2. In other words, we have to prove that the measure of the
points x (satisfying -1 x 1) which are in intervals (x i , x,+1) satisfying

6n < xi+1-xi < c,n and for which

(17)

	

xi+ 12n
<x<xi+1-

12n

and which satisfy (7), is less than E/2 .
If the above statement is false there clearly must exist at least E2 n/2c1 A

intervals (x i , xi+1), xi+1-xi < c1A/En, which contain bad points satisfying (17) .
But then there must exist at least vlnl4c1A such intervals

É~ n
(18)

	

(Xi, ' xi'+1)

	

l

	

r

	

4cl A
which do not have an. endpoint in common and each of which contains bad
points satisfying (17) . Now we prove



Then for any x satisfying (17) and xi+1-xi : c,A/en (i. e. not satisfying c))
we have

li+1 (x) I > có e2/A .
It is known (and easy to see) that for x i < x < xi+1

(19)

	

li (x) + li+1(x) > I ,
or by I w'(xi) I

	

I w' (xi) I we have for xi < x < xi+1

(20)

	

w(x)	 -f-	10(X)	 > 1 .
W (xi+1)(X- xi)

	

CU (Xi.+1)(X- xi+1)

Now since x satisfies (17) and (x i , xi+1) does not satisfy c) we have

(21)

	

j x- xil > 12c1Á
e2 1 x-xi+11-

Thus from (20) and (21)

which proves the lemma .

LEMMA 3 . Let yl, y2, . . ., yt be any t (t > to distinct numbers in (-1, + 1)
not necessarily in increasing order. Then for at least one u (1 u t)

If the lemma would be false we would have

(22)

	

1	1

	

< t, log t
l-iGj~t Yi-Yj,

	

8
where the y"s are ordered by size, i . e. -1 y' < y2 < . . . < yt

	

1 . But it is
easy to see that (22) is false . To see this observe that

t-~

(Yí+k-Yz) - 2k,
i=1

and using the inequality between the arithmetic and harmonic mean, we
obtain

or
1

	

t-1 t-k

	

1

l~i<j t Y -

	

k--1

	

yi+k-yi
fort > to which proves Lemma 3 .

8 See P. ERDŐS and P . TURáN, On interpolation . III, Annals of Math., 41 (1940),
Lemma IV, p. 529.

10 Acta Mathematics IX/3-4

1i+1 (x) I 1 + 12ec,A > 12
)

U-1 _ 1

	

l> t og t
1 Y2í-Yi 1

	

8

	

.

t-k-

	

(t- k)2
1 0,	1 , ~ (t-k)

t-k
=

i=1 Yi+k -yi

	

2k

	

2k

>
t- 1

(t-k)2 > r- log t
k=1 2k

	

8 .
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LEMMA 2 . Assume without loss of generality that I w' (xi) I I w' (xü-1) 1 .



W
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Consider now the intervals (18). By assumption each of them contains
bad points satisfying (17) . Define

yir = xa, -if I (.Q I j I ' (xir+i) I, otherwise yi, = xi,,+1 .

Reorder the yi, as follows

(23)

		

I w'(Y1) I

	

I (0'(Y2) I

	

. . .

	

l w'(Yt) I, t = F2 n -<::

	

] 4c1 A '
By Lemma 3 there is a yu. so that

(24)
	 1	> t log t

it l yu-yi I

	

8
We have (say) Y" = xa,. . Now we show that the interval

(25)

	

x',, + 12 n c x < xi+1-12 n

does not contain any bad points, and this contradiction will complete the
proof of Theorem 1 . To see this let x satisfy (25) .

We have form (24) and (23) by a simple computation that for the x's
satisfying (25) we have for n > no(F)

(26)
	 l	> t log t> n log n

i=1 I x-yi j

	

1 6

	

20
Further clearly

(28)

	

I lh (x) I = ~,

1t
(27)

	

1 11k(# > I' 11k(#k.- 1
where the dash indicates that the summation is extended only over those
xk's which are equal to one of the yi (1 - i u) . By (23) we have (xi,, = y.)

w (x)
cv' (xk)(x-xk)

w (x)
w' (Yu) (x -Yu)

U~1
.Yá=1

x-Yu
x-Ya

Now, by Lemma 2, (23) and (26) we have I x--yu I > 12 n by (25)

(29)
03(x) U-1

1i=1
x-yu.
x-y;,

which completes the proof of Theorem 1 .

(Received 1 August 1958)

c,-0

	

F

	

1

	

C6F3 n log n> A 12n i-1 x-y4 > 12n 20 > A
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