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The frequency of naturals n satisfying a condition 0 is defined as
the limit

fr In : n satisfies 0) = fim 1 in : n satisfies 0, n C N}N

provided this limit exists . (A denotes the power of A) .
We say that a set A (A C [0, 1)) belongs to the class ű if for every

irrational 1 the frequency fr In : n~ e A (mod 1)} exists and does not de-
pend on the choice of ~. It is well-known that every Jordan measurable
set belongs to ű and, moreover, the frequencies fr In : n~ e A (mod 1) 1 are
equal to the measure of A . Further, it is easy to verify that every Hamel
base (mod 1) belongs to ű, which shows that sets belonging to ű may
be Lebesgue non-measurable .

We say that a class űo is the base of the family ű if for every A e
there exists a set B e űo such that

fr{n : n~ eA=B(mod1)} = 0 *)

for any irrational ~ .
We say that a class •7,1 is the weak base of the family ű if for every

A e ű there exists a set BE-E ]. such that

fr In : n~ c A=B (mod 1)} = 0

for almost all ~ .
The purpose of this note is the investigation of Lebesgue measura-

bility of sets belonging to a base or to a weak base of the family ű . Na-
mely, we shall prove with the aid of the axiom of choice

MATHEMATICS

*) A=B denotes the symmetric difference of the sets A and B.
[743]
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THEOREM I . Every base o f the family c contains 22" Lebesgue non-measurable sets.

THEOREM 2. Every weak base o f the family - contains at least 2"
Lebesgue non-measurable sets .

COROLLARY. Under assumption o f the continuum hypothesis every weak
base o f the family

	

contains 2 2 '~ ° Lebesgue non-measurable sets .

Before proving the Theorems, we shall prove three Lemmas. Let
us introduce' the following notations

(1)
Uk = {.v : x rational, k(k 1)

	

x <k2}

	

(k = 1, 2, . . .) ,

w+ = U <Uk , 'W- {x : - x E w+} , w = W+ 'U 'W_. .
k=

LEMMA 1. For every rational number r 0 the equality

fr{n :-M'Ew}='

is true .

Proof . It is sufficient to prove that, for every positive rational
number r, the equality fr {rc : nr E `W+} _ holds .

Let I(k)(r) denote the number of such naturals n that ') .')'E `uk .

Obviously, -

(k]-l

	

1(r)(7. ) < [k]+1

where [x] denotes the greatest integer x .
IN(r) will denote the number of such naturals n (n < N) that ror E V+ .

If k JI/Nr] and nr E 2{k then, in view of (1), nr k 2 ~j/Nr1 2 < Nr,
which implies the inequality n < N. Hence, we obtain the inequality

11Nr]
TN(r) >

	

I(~'>(~ , )

	

(h -- 1, 2, . . .) .
k-i

Consequently, taking into account (2), we have the inequality

[11Nr]

I v(r') >

	

[k]
(3)

	

r - ~~Nr1

	

(N = 1, 2, . . .) .

Further, if k >I~ Xr] + 1 and nr E 2U then, in view of (1), -rrr >
k (k -1) > Nr, which implies the inequality n > N. Hence, we obtain

the following inequality

[IINr]+1

IN(r) -<-

	

1
1(k)(r)

	

N= 1, 2, . . .) .
k=1



t
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Consequently, taking into account (2), we have the inequality

[1/Nr]+1

k=1

IN(r)
k=

k=1

[k] + [1/Nrl -+ 1 (N =

Hence, and from (3), it follows that

[r:~~l k

( 4 )

	

I1~(t)= ~, [r]+o( ')

	

(N=1,2, . . .) .

Setting r =
P

, JY Nrl = drr p -+ sN (0 - s v < p), where p, q, dN and 8,V,

are integers tive obtain by simple reasoning
l1'Nvd

k

	

1

	

r,

	

s-4,

['r] - 2pgdN(dN-1) dN

	

[r]

	

[
1
r

j=1

	

j=1

-2pgdN+ o(N) -
1J N+o(N) .

gdNSN

Hence, in virtue of (4), we obtain the equality IN(r) = 2N+ o(N) .
The Lemma is thus proved .
By y we denote the first ordinal number of the power continuum .

Let us consider a Hamel base xo = 1 , xl , x27 . . ., xa , . . . (a < y) . Every
irrational number x may be represented as a linear combination with
rational coefficients x = ro + r, xul -+ . . . + r„ x where I - a1 < a2 < . .. < a,,
r,

	

0. In the sequel we shall use the notations r(x) = r,, a(x) = a, .
Let !3 be the class of all subsets of the set of all positive ordinals,

less than y . Obviously,

(5)

	

$

	

22'°

For every V E X3 we define the set

AT, = {x : x irrational, 0 < x < 1, r (x) E W, a (x) E V} U

{x : x irrational, 0 < x < 1, r (x) non E'W, a (x) non E V}

LEMMA 2 . For every V E T3 Ar, E 5 . Moreover,

n~ E AV (modl)} = 2

for each irrational ~ .
Proof. Since r(rt~) = nr(s) and a(rr,~) - a( ) we have the following

equality
Ew, n Nj

{n : n$ E Ar-(mod l), 12, ~ N} _
t

ar
n :nr(,)110nEw, 11, íl%}

if

	

Ct (~) E V,
if a(~)nonEV .
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Hence, according to Lemma 1, for every irrational $, we obtain the
equality fr In : n~ E Av (mod 1)} = 12, which was to be proved .
LEMMA 3 . Let D (D C [0, 1)) be a set satisfying the equality

(6)

	

fr{n : n~ E Av -D(modl)} = 0 (V E ~3)

for almost all ~. Then, D is Lebesgue non-measurable .
Proof. Suppose the contrary, i . e . that D is Lebesgue measurable .

First we shall prove that, for every interval U (U C [0, 1)) and for al-
most all ~,

(7)

	

fr{n : n~ EAvnU(modl)} - 2

where JUI denotes the measure of U.
For brevity, we shall use the notations

Ul,

2Q)°= W, CIO,=W, V°=V and VI =V',

where W denotes the complement of the set `W to the set of all ratio-
nale and V' denotes the complement of the set V to the set of all po-
sitive ordinal numbers less than y .

For every rational r (r

	

0) we denote by k(,' ) ( r) (n = l, 2, . . .) the
sequence of naturals n such that nr c `ZQ) . ( i = 0, 1) .

It is well-known ([2], p. 344-346) that, for every sequence of in-
tegers k, < /cz < . . . and for every interval U (UC [0, 1)),

fr{n :kn ~E U(modl)}= I U l

for almost all $. Consequently, for almost all ~ and for every rational r
(r

	

0), the equality

(8)

	

fr{n : k (,' ) ( r)~ E U(mod l)} _ I U j

	

(i = 0, 1) .

From the definitions of the set Av and the sequences k (,' ) (r) it follows
directly that

{n : kn')(r(~)) < N} _ {n : nr(~) E W. , n < N}

if a( ) E Vi (i = 0, 1). Hence,

N{n :n$EAvnU (mod 1), it <N}=

{n : n~ EAv n U(modl), n < N} _ {n : k(n)(r(~))s E U(modl), k. ( )) < N}
and

1

	

i

	

- {n : kn` ) (r( )) EU (mod 1), k~n) (r(~)) < N}
=
N

{n :nrOEg9), n<N}	
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if a(~) E V 2 (i = 0, 1), which implies, in view of (8) and Lemma 1, the
equality

fr{n :n~EAvnU (mod l)} _

= fr {n : nr (~) E w'} fr {n : kn' P (r (~)) ~ E U (mod 1)j= z I U ~ .

The formula (7) is thus proved .
From (6) and (7) it follows directly that, for every interval U and

for almost all ~, the following equality holds

(9)

	

fr{n : a~ ED n U(mod l)} = 21U~ .

Further, in view of a Theorem of Raikov ([1], p . 377),

1
lim
v>00 o

x(nz )- Dn U~ I d~=0,

where Z is the characteristic function of D r, U extended on the line
with the period 1 . Hence, and from (9), for every interval U, we obtain
the equality ID n U j = 2I U , which contradicts the Lebesgue density
theorem. The Lemma is thus proved .

Proof of Theorem 1 . Let V E 23. By By we denote a set belonging
to the base of the family - such that

fr{n : n~ EA v -Bv (modl)} = 0

for each irrational ~ . (According to Lemma 2 the sets Av (V E 23) belong
to -). Applying Lemma 3 we find that the sets By are Lebesgue non-
measurable . Since the powerr of the base is <22"o' then, to prove the
Theorem, it suffices to show, in virtue of (5), that the function V ~Bv
establishes a one-to-one correspondence between sets V and sets Bv .
Suppose VI V2 . There is then an irrational ~o such that a($ o ) E V1=V2 .
Taking into account the definition of Av , we have A$ o E Avl-Av2 (mod l)
(n = 1, 2, . . .) . Hence, fr{n : n$o E Avl -Av2 (mod l)} = 1, which implies
fr {n : n$o E Bv, -Bv2 (mod 1)} = 1 . Consequently, Bv, Bv2 .

Theorem 1 is thus proved .
Proof of Theorem 2 . By 3 o we denote the class of all subsets

of the set of all denumerable ordinal numbers . Obviously, 23 Q C 2B and
23„ = 2" 1 . By Cv (V E 23 0 ) we denote a set belonging to the weak base
of the family -7 such that

fr In : n~ E Av = Cv (mod 1) } = 0

for almost all ~. According to Lemma 3, the sets Cv are Lebesgue non-
measurable . To prove the Theorem it suffices to show that the function :
V --~ CV (V E 23 0 ) establishes a one-to-one correspondence between the
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sets V and the sets Ci- . Suppose. V, = V~ (V,, i ,

	

Similarly to the
preceding proof we find that

fr {7z : rah E CV, - CT;" (mod 1)} = 1

for almost all ~ satisfying the condition a(~) E V,-V, . Obviously, to
prove the inequality C,:-, = Cr-, it is sufficient to shoe- that the outer
Lebesgue measure of the set S= {~ : a($) EV,,-V,} is positive . Suppose
the contrary, i . e .

(10)

	

S

R = U 1 .r
ri, . . ., r'i

=0 .

i=1

Let it be the first ordinal number belonging to VI -V, . It is easy to verify
that the real line R may be represented as the denumerble union of
sets congruent to S

r7x" . :xES4,

where rl , . . ., r,z are rationale Ot, - 1, 2, . . .) . Hence, and from (10), it fol-
lows that IRj ` 0, which is impossible. The Theorem is thus proved .
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