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0. Introduction

PART I

The Sieve of Erathostenes is an algorithm which yields the sequence
of all primes. This paper deals with a family of somewhat similar algerithms
for creating sequences of integers.

These algorithms depend on an initial integer 4 and on an auxilary

sequence B of integers b, (k=1, 2, ...
mediary sequences 4% (i=1,2, ...
integers a{?(k=1, 2, ...

) with b,>2. A family of inter-
) is formed, A% consisting of the
). The sequence A% is defined by:

af) =i +k.

The sequence A%*V is obtained from the sequence A® by striking

out all the terms of the form a)
remaining terms: a{it?, af*y, ..
integers a, (k=1, 2, ...

1+mb;

— k)
A =0ay".

(m=0,1, ..

.) and by renaming the

. Finally, the sequence 4 consisting of

) is deﬁned by:

Two examples of sieves will be considered: in the first the sequence B
will be given in advance while in the second it will be determined by the
sieving process itself.

In the first example we will take b,=k+1. If we choose 1=0, the
first terms of the first several sequences A are (the numbers in bold are

those to be struck out in the next sequence):

AVB=2):12345
A9)(b,=3)
AO) (by=4):
AB(b=5):

AB)(b=6):

234
2 4
4

6
6 8
6
6

10
10
10
10

12
12
12
12

14

T 16
16

18
18
18
18

20

22
22
22
22

24
24
24

26

28
28

Therefore, in this case a;=1, a,=2, a;=4, a,=6, a;=10. Also a;=12,
a,=18, ag=22 and a,= 30 because these numbers will no longer be struck
out in the following sequences until each one of them reaches the head

of the line.

7 891011 1213 1415 1617 1819 20 21 22 23 24 25 26 27 28 29 30

30
30
30
30
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In the second example we shall take b,=a,. If we choose A=1, the
first terms of the first several sequences are:

AVD,=2): 234567 8910111213141516 1718 19 20 21 22 23 24 25 26 27 28
3 5 79 11 13 15 L7 19 21 23 25 27

5 7 11 13 17 19 23 25

7 11 13 17 23 25
Therefore, in this case: a;=2, a,=3, a;=5, a,=7 and also a;=11,

=13, a,=17, ag=23, a,=25 and a,,=29.
The following are the principal results obtained.

1. General explicit formulas giving a; intermsof the b,(: =1, 2, ..., k—1)

are found and various more or less precise estimates of a, are given under
different restrictive assumptions as to the nature of the sequence B.
The various estimates of @, will be known respectively as the zero-step,
the one-step and the multi-step estimate.

2. For b,=k-+1 it is shown using the more precise multi-step estimates
that : '

k? 5
Ay, = -; -+ O(k a).

3. For b,=a, it is shown that @, ~ klog k. The @, are in this case
(for every 1) asymptotic to the primes. The proof has some similarity
to that of the prime number theorem and makes use of the Tauberian
self regulation of the sieving process. However, because of the greater
regularity of the present process as compared to the Erathostenes method,
the asymptotic formula for a; is obtained much more easily than that
for the primes.

4. Again for b,=a;, using the one-step formulas, it is shown that:

Z=TI =5 +0q1),

a<k % 1

and hence it will follow that a,=F log k+ % k (log log k)%+o(k log log k)2.
Thus it is seen that for large £ we have @, >p,. It was surmised by Er1
JABOTINSKY in a paper read to the 1953-meeting of the Israel Mathematical
Society, on heuristic grounds, that a, ~ p, and that a, oscillates around
P The second surmise is thus proven to be wrong.

5. Again for b,=aq, using the more precise multi-step estimates for
@, it is shown that (y Euler’s constant)

ag

5=

2 (1—y) +o(1).

a; <k &
From this it is deduced that

a,=k log k+ 3k (log log k)24 (2 —y) k log log &+ o(k log log k).

29 30
29
29
29
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1. General Explicit Formulas

We shall denote by X the smallest integer > X.
Considering the generation of the sequence A%V from the sequence
A% we see that:
i+l = g

=k

Repeating this reasoning ¢ times we find that:

otV = af) with k' = ‘_bl ‘-bz—l l_ {b@—l k—l —H_l

Using the fact that af =A+k%" and af{*V=a;,, we get, putting ¢+ 1="F:
S a,=i+1,

CIRE O P TSR}

which is the first of the announced explicit formulas for a;. We have:

b,—l ’-b

Applying this to (1) we deduce the following estimate for a,(k>2):

;~_|_’:1ji<bﬁ> ak<Z+H< >+CZ H<b—1):|

b—l

or, because bi = 13
b;—1

2) A+f=I—I:(b—_ib_i—1)<ak<l+(k—1)jlji(%)-

This formula will be called the zero-step estimate for a,.
Formula (1) can be used for actual computation of the a,. Thus, in
the case b,=k+1, A=0, let us for example compute ay. We have:

e SHHHHHEHHM!
$-s [52]=0 [35] - [24]-s [3]-7

[5-7]=10, [3-10] =15 and [2.15] = 30.
Therefore a,=30.

We see that a, is the last of the sequence of integers: 2, 3, 4, 5, 7, 10,
15, 30, which are the values of the successive brackets [ 1. We note that
these integers first increase by 1, then by 2, then by more and more.
If we knew how many brackets produce an increase by 1, how many
by 2 and so on, we would get much shorter expressions for a,.

In the general case, let @ be the smallest integer such that:

be_q—1<Q.
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Then the first @ —1 brackets give an inecrease by 1 and we have for
every ¢<@:

(3) =4+ l—bl—l - [ [b;cbkqjl q _m

Formula (3) takes into account the brackets which increase by steps
of 1 and can be called, “the explicit formula for the one-step”. By the
same token formula (1) is “‘the explicit formula for the zero-step’.

Formula (3) with g=@ leads to a second estimate for a,. Namely:

(4) = A+ [k—0(k—Q)] f ( '),with 0<f<1,

which is the one-step estimate for a,. Explicit formulas for steps 2, 3
and so on are conveniently established under the restrictive assumption
that B is a non-decreasing sequence (by,,>b, for all k). This assumption
happens to hold in the two particular examples considered by us. Then
the explicit formula for m-step is (for m=1, 2, ...):

(5) I = H|'b1 ‘-b o[- I’b,pbk = E:%HTH

where ¢,=0 and g, is the smallest integer for which:
m(bk—qm < MGy, — z q;-

The proof by induction is immediate. We note that (¢,—g,_;) is the
number of brackets which give increases of n. For m=1 formula (5)
becomes formula (3) with @ =¢;. Formula (5) leads to the m-step estimate
of a,. Indeed, from (5):

k—ay, b
i

] (mqm—gqi) <a<A+ [T (52)] omga— E a) +

A+ [kﬁm (bilz

with:

k—q,—1

R- 3 (L2

s=1 =

<[ (]

and therefore:
Ie—qy,

(6) ak=l+ []__{ ( >:| [mgm :2»_; q;+0 (]c—qm)], with 0 < 0 < 1,

which is the multi-step estimate for a,.
Another result of a different kind which will be needed holds n the
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particular case when  lim %= oo (but the assumption that b, ,>b; for

k— o0

all k& is not required), namely if 279 — oo then:

() T =[1+001 ]H( )

Indeedv, in this case the smallest @ for which b,_,<@+1 is such that
k—@Q=o(k) and inequality (4) becomes:

= [Tl H (b - 1)
All that has to be proven is that:
k b
=140
i=k1:J(:2+1 <b‘_1) ().
This will follow if we prove that:
’ 1

Choose any small ¢>0 and write:

[e&] k

3
1 1 1
g e o
i= ; 1 i i=k§2+1 bi R b
We have:
[ek]
1 [ek] ek
= < === <2¢
P SO Q k—ek ’

because by definition, @ is the smallest integer such that b,_o<@Q+1
and so b,_;>j for j<@ and here b;>k—1>@Q+ 1.

Also from % s 0o we have:

%
k
1 k
AR Aty =o(1),
i=lek]+1 ek<i<k

which completes the proof of (7).

2. The case by=k+1, A=0
We shall need an auxiliary sequence «,; (i=1, 2, ...) of numbers defined
by the recurrence relation:

(8) ml— 3 a)= Six,  (for m=L2,..).

By a suitable combination of relation (8) for m, (m+1) and (m+2),
one sees readily that:

1 2m —2
() on= gzii( 1)
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and: ,

(10) I_é“izﬁi’"ez)'

It is well known that:

(11) %;L(zzz)z—ﬂvl_z[uo(%)].

We shall now use formula (5) which becomes:

a7 e S 0 1T

where the g¢,, are defined as follows: ¢,=0 and g¢,, is the smallest integer
for which:

m—1

b —gn) < Mgu— 3 9.
Therefore g,, is an integer for which:
m—1
(13) mk+1 < 2mq,— > ¢ < mk+2m.
i=0

We now use the sequence «; and define the numbers 6% by the relation:

(14) @i —Qi—q = ko +OF.
From (14) we deduce that:
(15) dn—k( 3 o) + 3 0M,
i=1 i=1
and:
m—1 m m
(16) — 3 a=h(3 im) + 3 i0F,

=1 i=1

or, using (13), (15), (16) and (8) we obtain by a simple computation:

(17) 1< > (m+1) 00 < 2m.

VE

We note that the sum in inequality (17) is an integer because the
middle term in (13) is an integer. We shall not use this fact.
Formula (12) now leads to the following estimate for a;, analogous to (6):
m—1
ak=(k_qm+ 1) [m%n_ z Q%_‘_O(]c—QM)]’ with 0 < 0 < 1,
=0
or, using (15), (16), (8) and (10):

o= [k (7) - 5 - é o+ 1] [ () g + gl 60| +6'(k— g,



or again by (15):

Py m (2m>2_k<2m> ol % (m— i) 6% +

24m

3
+ zlwgm (1— 3 6#) + ’%7: (212’ +0' [k (2 ) S = g_,

with 0<6’'<2.

m

m m
We now need estimates for > 6, for > ¢ 6 and for Y (m—1i) 6.

i=1 i=1 i=1

Inequality (17) yields easily:

m
0< Y0P < 2,
i=1
(19) —2m < Y0 < 2m,
i=1
—2m < Z 1) OF < 4m.
i=1

Indeed, the first inequality of (19) holds for m=1 and by induction
for all m and the two other inequalities follow from this and (17).

(All these are not the best possible inequalities.) Using (11) and (19)
n (18) we find:

ay= 2 [1+0 () ]+ £0(Vm) — 0(m)+0 (5) + = +0(k).
Choosing m = [k*] we find:
k2 .
(20) 4= = +O0(k").

A sharpening of the inequalities (19) should lead to the reduction of

the index 4. Numerical evidence indicates that:

L2

Ay = —
Te 7

+0(k).

3. The case b,=a; (and any A>1)
We shall show that in this case a,/k — oo so that formula (7), which
now becomes:
1)

holds. Indeed, a;,—A>k and @, is an unbounded and increasing function
of k. Let @ be the smallest integer such that a,_, <@+ 1. Then @ is such
that 1 —@Q—A<@Q+1 and:

@) O] T (5

Q _; A+l
¥~ TR
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Formula (4) now becomes, by using first =0 and then §=1:

(22) I (20> 22> - ) T )

i=1

When & — oo both @ and (k— @) — oo. If the product in (22) converged,
a,/k would be bounded, but then the product would diverge. Therefore
the product diverges, so that a,/k tends to co and @/k to 1.

From (21) we easily see that:

ar+1 ax _ (%%
Bl R 0<k)
and thus that a,/k changes slowly.
We now want to show that:

(23) lim infk <1

log &
Indeed we would otherwise have:
>(1+0)klogk for k>k, with 6>0,

and so from (21):

| i 1 = Em
(1+6) ]'ng<01£];(1—(1—+‘6—)-1‘—j—5§—5) = Cy €'~ 1 .

Since:
k

z “igz ¢3+log log k+o(1),

we would have:

loglogk

1
(1+6) logk < cye 170 =¢, (log k)I+é

which is wrong. Similarly it can be shown that:

¢ : ) ay,
(24) lim sup TTogd = 1

Suppose now that:
= ay -
llmsupm—l_{_ﬂ (C>O)

Then, because of the slowness of change of a,/k and because of (23),
for a suitable choice of ¢; and ¢, so that 0<c¢; <cy,<e¢, there exist two num-
bers k, and k, such that:

Ay,
kylog ky

< I4¢; and —— g > 14¢ for by < kb < ky,

and;

Ay,

ke, log ky

> 140y and ;== < 1+¢y for by < k < k.

gk
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We have:

(25) Ay . Ak (1+c,) log ky
ky " Iy (1+c,) log ks

But from (21) we have:

k1

%, B (14 o(1)] T (52) = [1+0()] %%

ks Iy =T

K, 1 1

2, Traion o
s Ty (T

log &,

which contradicts (25). Therefore:

lim sup

Je—00

ay _
kloghk L.

Similarly it can be shown that:

. . aj _1
]{13310 1nfm =1,
and hence:
\ im - _
(26) kliﬂ Fogh U’

as stated in the introduction.
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