ON AN ELEMENTARY PROBLEM IN NUMEER THEORY

Paul Erdds
(received October 26, 1957)

A question which Chalk and L. Moser asked me
several years ago led me to the following problem:
Iet 0 ¢ x £ y. Estimate the smallest f(x) so that
there should exist integers u and v satisfying

(1) 0 <u,v < f(x), and (x+u,y+v) = 1.

1 am going to prove that for every € > 0 there
exist arbitrarily large values of x satisfying

(2) £(x) > (1-¢)(log x/loglog x)*/2,
but that for a certain ¢ > 0 and all x
(3) f(x) < ¢ log x/loglog x.

A sharp estimation of f(x) seems to be a difficult
problem. It is clear that f(p) = 2 for all primes p.
1 can prove that f(x)->o and f(x)/loglog x => 0 if we
neglect a sequence of integers of density 0, but I
will not give the proof here.

First we prove (2). Let P; <Py L.-c... be the
sequence of consecutive primes., Let k > 0 be an arbi-
trary integer. Put (1 < i < k)

Ai = nPJ: (1"‘1’k < 3 ‘ 1“,

and By = MNpy, 3=1 (mod k), 0 < J < k2.
v=k =K j= k*
Clearly Maay = T, = 1, g

(A, ,A, ) = (B, ,B, ) =1, (A, ,B, ) # 1.
11’ 12 11’ 1.2 ’ 11’ i,
Thus the system of congruences (1 < 1 < k)
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x+1-1=0 (mod A ), 0<x < ﬂ.\ iji
K
}H'l-l =0 (IIlOd Bi)’ anpJ < ¥y S 2n31pd
has a unique solution in integers x and y. Clearly,
if 0 £ 1,,1, <k, then
(x+1,,y+41,) = P(a,-1)kes, > 1

Thus f(x) > k. From the prime number theorem we have
= (1+0(1))n log n Thus
x < ﬂ,.ipj < exp(2(1+€)k°log k);
hence (2) follows,
To prove (3) let n be such that for all ogu,v<n,
(x+u,y+v) > 1. We first remark that if p < n, then

the number of pairs 0 { u,v < n, for which
(x+u,y+v)=0 (mod p),1is less than

(n/p + 1)2 < n2/p2 + 3nfp .

Thus the number of pairs 0 < u,v < n, for which
(x+u,y+v) has a prime factor not exceeding n,is less

oo
than n®L, , 1/p% + 3n}_,,, 1/p
= (1+0(2))n®Z, 1/p? < 3n%/s
for sufficiently large n.
i
(4 1/p% < 1/8 +I,, 1/k(ks1) = 3/4).

Thus for at least n2/4 pairs 0 L u,v<n,
(x+u,y+v) must have a prime factor greater than n.
But if p > n then there is at most one 0L u,v<n
with (x+u,y+v)-—-o (mod p). Thus n,_o (x+1) must have
at least n /4 distinet prime factors greater than n.

H {n <
R X 5 (2x)® > (1}, (x+1) > n” “/4 ;

thus log 2x > n/4 log n, or n < ¢ log x/loglog x,
which proves (3). By a slightly more careful computa-—



tation it is easy to show that for sufficiently large
X, Tlx) < (12/12 + €)log x/loglog x, and by a little
more sophisticated but still elementary reasoning I
can show that f(x) < (1/2 + €)log x/loglog x. Any
further improvement of the estimation of f{x) from
above or below seems difficult.

It can be remarked that to every x and n there
exists a y so that (x+1i,y+1) > 1 for 0 <1 < n. To
see this it suffices to put ¥y = x + n!. On the other
hand one can show by using Brun's method that there
exists a constant c so that, for some 0 < 1 < (log y)°,
(x+i,y+1) = 1. To see this observe that every common
factor of x+1 and y+i must divide y-x., Thus if i is
chosen so that (x+1,y-x) = 1, then (x+i,y+i) = 1.

Now it follows from Brun's method that there exists a
constant c so that, for every n, (log n)c consecutive
integers always contain an integer relatively prime to
n. Putting n = y-x we obtain our result.

By simllar methods as used in the proof of (3)
we can prove the following

THEOREM. ILet g(x)(log x/loglog x)‘l->m, 0<xXx <Y¥.
Then the number of pairs 0  u,v < g(x) satisfying
(x+u,y+v) = 1 equals (1+0(l))(6/z2Jg2(x).

To outline the proof of our theorem we split the
pairs u,v satisfying

(4) 0 L u,v < g(x), (x+u,y+v) > 1

into three classes. 1In the first class are those for
which (x+u,y+v) has a prime factor not exceeding P
where k tends to infinity sufficiently slowly. 1In
the second class are those for which (x+u,y+v) has a
prime factor in the interval (pk,g(x)), and in the
third class are those where all prime factors are
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greater than g(x).

As can be easlly seen by a simple sleve process,
the number of pairs in the first class 1is

(s) (2+0(1))(1-x2/6)g?(x).

As in the proof of (3) we show that the number of pairs
in the second class 1s less than

(6) (140(2))e%(x)Z,,, 1/p% = o(g®(x)).

Denote by t the number of palrs in the third class,
As in the proof of (3) we have

g0)-1
(7) (2x)8) 5 17" (x41) > &(x)b,
or t < g(x)log 2x/log g(x) = o(g2(x))

since g(x)(log x/loglog x)'l >0, (5), (6) and (7)
imply that the number of pairs u and v satisfying (4)
is of the form (1+o(1))(:2/6}(g2(x), which proves the
theorem,

We can show by methods used in the proof of (2)
in our theorem that we cannot have g(x) less than
c¢(log x/loglog x)l/a,i.e., g(x)(log x/loglog x)~1/2ﬁ>u:
1s necessary for the truth of our theorem. An exact
estimation of g(x) seems difficult.

University of Toronto
* L. Moser informs me that he independently obtained

this result and its generalization to an m—dimensional
lattice.



