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In (3), some of us proved that Brownian paths in n-space have double points with 
probability 1 if rz = 2 or 3; but, for n > 4, there are no double points with probability 1. 
The question naturally arises as to whether or not Brownian paths in m-space (n = 2 
or 3) have triple points. The case of paths in the plane is settled by (a), where it is 
shown that, with probability 1, Brownian paths in the plane have points of multi- 
plicity k (k = 2,3,4, . . .). The purpose of the present paper is to settle the remaining 
case, n = 3. We prove that, with probability 1, Brownian paths in 3-dimensional 
space have no triple points. The general idea behind our proof is to show that there 
are not too many double points. That is, we show that the set of double points has 
sigma-finite linear measure, and therefore zero capacity, with probability 1. 

1. DeJinitions and preliminary results. Let (a, &,,u) be a probability space, i.e. 
I2 = (u> is a set of elements w, 8 = (E} is a Bore1 field of subsets of Q called events, 
and ,u is a countably additive measure defined on d and satisfying p(Q) = 1. ,,@E) is 
called the probability of the event E. 

A one-dimensional Brownian motion (see (I), (2), (7)) is a real-valued function 
x(&w) of the two variables t and W, defined for all non-negative real numbers t, 
0 < t < co, and for all w E 8, which has the following properties: 

(a) x(0, w) = 0; 
(b) for any real numbers s, t with 0 6 s < t < co, the increment (x(t, w)- ~(8, o)> 

is b-measurable in o and has a normal distribution with mean 0 and variance t -8, 
that is, if E(x, s, t, a) = (w: x(t, w) - x(s, w) <a}, (1) 
where (w : . . .> denotes th e set of o having the properties following the colon, then 
E(x, s, t, a) is measurable and 

a p(E(x,.s,t,d)) = [2n(t-s)]-4 
s 

exp[-U2/2(t-S)]dU (2) --m 
for every real number a; 

(c) for any real numbers si, ti (; = 1,2, . . ., m) with 

0 < $1 < t, < s2 < t, < . . . < 5, < t, < Go, 

the increments (x(t,, w) -z(si, VU)>, i = 1,2, . . ., m, are independent in the sense of 
probability theory, i.e. 

for any real ~ii, i = 1,2, . . .,m. 
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A three-dimensional Brown&n motion is an ordered triple of three mutually in- 
dependent one-dimensional Brownian motions x(t, w), y(t, w), z(t, w) with the property 
that 

p{E(z, 8, t, a) n E(y, S’, t’, Cd) n E(z, Sn, t”, U”)) 

= p{-w, s,t, U,)/@~Y, S’,t’,u’))~lc(E(z,s”,t”, u”)) (4) 

for any real numbers s, t, tl, a’, t’, a’, s”, t”, un, with 0 < s < t, 0 < 8’ < t’, 0 < 8” < 6”. 
If we consider r(t, o) = [x(t, u), y(t, o), z(t, w)] as a point in Euclidean 3-space, then 

for each fixed w, r(t, w) may be considered as a function of t, defined for 0 < t < co, 
and assuming as values, points (or vectors) in 3-space. 

It is easy to see that this definition of Brownian motion in 3-space is independent 
of the choice of the rectangular coordinate system; i.e. the motion is isotropic, it is 
invariant vis-&-wis rotations of the coordinate system. 

It is further assumed that the Bore1 field d is sufficiently large to contain the subset 
C of Q consisting of all o for which x(t, w) is continuous as a function oft (0 d t < co), 
and ,X(C) = 1. This means that Brownian motion is a separable stochastic process in 
the sense of Doob (I). 

For any point r’ in S-space, for any w E 62 and any real numbers a, b with 
0 < a < b < co, let us put 

L(a, b; r’; w) = (r’+r(t, co): a < t 6 b}, (5) 

L(a, co; r’; w) = (r’ + r(t, w): a < t < co], (6) 

L(r’; w) = (r’+r(t,w): OGttcoco), (7) 

where the -t sign in the above formula (as well as + and - in similar context in the 
sequel) refers to vector addition. Furthermore, when r’ = 0, i.e. coincides with the 
origin, we use the abbreviations 

L(a,b; w) = L(a, b; 0; o), L(w) = L(0; w). (8) 

L(u, b; r’; w) is called the (a, b) path of the Brownian motion starting from r’, and 
L(r’; o) is called the path of the Brownian motion starting from r’. 

For almost all w, L(u, b; r’; w) is the continuous image of the finite closed interval 
{t: a < t < b) and is therefore a compact subset of the 3-space. 

A point r. in 3-space is called a triple point of L(o) if there exist three real numbers 
t,, t,, t, with 0 .S t, < t, < t, < co for which r(t,, w) = r(t,, w) = r(t,, o) = r,,. 

Let 1 rI-rz ( denote the Euclidean distance from r1 to r2, and 1 r ( the distance 
from r to the origin. 

We need the concept of culpa&y (see, for example, Frostman (6)). Let F be a com- 
pact subset of S-space. Let A’(F) be the family of all countably additive measures 
m(B) defined for all Bore1 subsets B of F with m(F) = 1. Put 

h(F) = inf m(dr,) m(h) 
-lrl-rzI ’ 
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where the double integral is extended over P x P, and inf is taken over all measures 
m E d(F). Now h(B) = CC if and only if the double integral is co for all m E d(F). 
The (Newtonian) capacity of F is defined by 

C(F) = 0 
1 

[h(F)]-1 if h(F) < co, 
if h(F) = 00. 

We need the result that Brownian paths L(r’, w) starting from a point r’ not in F wilI 
have no points in common with F, with probability 1, if C(F) = 0. This is 

LEMMA l-1. Let F be a compact set in R3 with C(F) = 0. Then, for every r not in F, 
the path L(r ; w) and F a.re disjoint with probability 1. 

This result is due to Kakutani (7). 
We also need to define linear measure, If A is any set in R3, let %(A, S) be a sequence 

of convex sets E, (i = 1,2, . ..) such that d(E,), the diameter of Ei, satisfies d(E,) < 6, 

andAc GE,. Put 
i=l 

&(A) = inf 2 d(E,), 
i=l 

(9) 

the infimum being over all such coverings &(A, a), and 

A*(A) = kVt&(A). (10) 

The set function A* (n) is an outer measure in the sense of Caratheodory. If A is 
measurable with respect to this outer measure, then the value of A*(A) is called the 
linear measure of A, and denoted by A(A). 

For sets A in R3, there is a connexion between A(A) and C(A) given by 

LEMMA 1.2. If E is a bounded closed set in Euclidean space of 3 dimensions such that 
A(E) is&de, then C(E) = 0. 

This lemma was proved for plane sets (where logarithmic measure and logarithmic 
capacity are concerned) by Erdds and Gillis (5). The present result is due to Kametani (8) 
who used the methods of Ugaheri (9). 

We also need a result which shows that very large movements of r(t, o) in a small 
interval a < t < a + 6 are unlikely. 

LEMMA l-3. For any 7 > 0, S > 0, t, = t, + 6 and w in the space Q, 

2 2s + 
pu(w: sup 1 x(t, w) - x(t,, 0) I> 7) < rl ; 

t.<t<tl ( 1 
exp [ - 7+/2S]. 

This result has been known for a long time. It follows immediately from Theorem 2.1 
of (1). 

LEMIWA 1.4. For any 7 > 0, 6 > 0, t, = t, + S and w in the space Cl, 

P@:~;;$~~I r(W-r(t,d 1 >r> < l~$=~t-r2/~61. 

Proof. If sup 1 r(t, o) - r(t,,, W) 1 > q, then for at least one of the coordinates, say x, 
toa 

sup 1 x(t, w) - xv,, w) ) > $7. 
t.St<t, 

Now, by Lemma l-3, 

4~: sup I XV, 4 - r(t,, 4 I > 471 < 
to<t<t* 

exp [ - r2Wl. 
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Hence 
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2. Proof of the main resdt. We first obtain a covering for the subset of the double 
points of L(u) given by qo, 1; U) n L(2, co; w). 

The set of double points is difficult to obtain by approximation methods, so we cover 
a larger set of ‘near returns ’ , For a given r in L(0, 1; o) we say there is a near &return 
inL(2,c.o; ti)ifEfI r-r(t,w) [ < 6. If we cover the subset of L(0, 1, w) for which there 

, 
is a near a-return in L(2, co; w), then we have certainly covered the set 

L(0, 1; w) n 42, Co; w). 

Our first step is to obtain the probability of near return. 

LEMMA 2.1. If E > 0, 

p(w: frrl r(t,w)) cc} < @‘IS. 

This is a special case of Lemma 2 of (2). 

RemarE. The estimate for ,w{w: inf 1 r(t, w) 1 K ~1 given by Lemma 2.1 is a good one, 
121 

the error being o(e) as B -+ 0. 
To obtain a covering of L(0, 1; w) n L(2, a3; W) we divide L(0, 1; o) into h2 parts 

and consider the likelihood of a near l/k-return for some point of one of the parts 
L(tivl, ti; w). If this event occurs, we take a sphere centre r(ti, o) large enough to enclose 
all of L(t,-,, ti; w). 

Let k be a positive integer. Let t, = i/i?, (i = 0, 1,2, . . . . k2) define values of t, 
0 < ti < 1. Then we say there is a near l/k-return in L(t,+ t,; w) if there are values of 
t, r such that if-l < t 6 tz, r > 2, and ) r(T,w) -r(t, w) ) < l/i& Call this event Fg+ 
Then F$,k can occur only if either r(t, w) returns very close to r(t,, w) for values of 
t > 2, or the path returns fairly close and in addition L(tiAl, ti; w) has alarge oscillation. 
Thus if pi,i,k occurs, then one of the events Ei,k,s {S = 0, 1, . . .) must occur where Ei,k,o 
is the set of o such that 

sup 
It-,<t<tc 

1 r(t, w) - r(t$, W) 1 < t, 

and (12) 

E i,k,s(~=1,2,..,)i~thesetofosuchthat 

(13) 

and inf 1 r(t, u) - r(t;, w) 1 < T . 
t>2 

(14) 
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Define a random variable li,k(~) (i = 1,2, ._ ,, k2), by 
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if w E Ei,k,s (s = 0,1,2 )... ), 

0 if w is not in Fg,k. 

For i = 1,2 , . . . , k2, define a sphere Si3 k with centre r(t,, k) and radius &. Then by 

construction, C LY,,~ covers L(0, 1; 0) n L(2, co; w). Let 
i=l 

We now prove that Zk(w) has finite expectation. Now 

ru’Rk,Ol G P( w: inf 1 r(t,w)-r&w) 1 <g t~ti+l 1 

=/,6 w:infIr(t,o)I<i 
( 

, by (2). 
t>1 

Hence, by Lemma 2.1, 

(16) 

By (3), the conditions (13) and (14) are independent. Hence, for s = 1,2, , .., 

PIEi, k,J 

= p w: F < li-95qtii r(t, w) - r(t,, w) 1 6 k, p(ti: inf I r(t, w) - r(t,, w) 1 < ‘F) 
1 

2s+3\ 

t22 

<p w: 
( 

sup 1 r&w)-r(t,,w) 1 > “;.“)p(cd: 
t,- it+ * 1. 1 

inf I r(t, w) - r(t,, w) 1 < y) 
1x*+1 

6 10.2-s-2exp(-2ti+1 
2 *2s+3+1 

)O 7r 
- k, 

by Lemmas (1*4), (2.1). Thus we have, for s = 1,2, . .., 

~u(-%k,J < $9 (-47. 

Thus s lk(W) dw = 2 ~ li k(W) dw 
n s i=l 61 ’ 

= 2 “f; 5 %${Ei.a,3 
Z=ls=O 

< 14442 f$ 10.2s+3exp(-4S), 
s=l 

by (16) and (1’7). Hence 

s 
Z,(o)dw < JM (k = 1,2, *..), 

R 

(17) 

(18) 

where M is some finite constant. This allows us to prove 
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LEMMA 2*2. For almost all w of 0, 

R(L(O, 1; w) n L(2, co; w)) < co. 

Proof. Let Tk,r = {w: Z,(o)<j.JJ),j= 1,2,.... Itfollowsfrom(18) that 

ru.(Tk,j} > l-l/j (k= I,2 )... ). (19) 

Let 

then Tj is the set of u which are in Tk,j for infinitely many positive integers k. By (19), 
it follows that 

,a(Tj) 2 l- l/j. (20) 

Hence ,u 
1 I 

G q = 1, and almost all w  of !A are in Z& for some integer j,. Given a fixed 
j=l 

wO, let j, be such that o0 E TjO. Then 

(21) 

for all integers k in a certain subsequence 

4, h, . . . (22) 
of the positive integers. 

Since r(t, w) is continuous with probability 1, it is uniformly continuous 0 < t < 1, 
and hence 

max c&!$~) -+ 0 as k -+ 00. 
l<i<F 

For any S > 0, choose K such that 

max d(Si,k) < 6 for k 2 K. 
1 ii<kP 

Then, if k,. is any integer of the subsequence (22) such that kr 2 K, then 6 Si,+ is a 
i=l 

covering of L(0, 1; o) n L(2,co; W) by spheres of diameter < 6 and, by (21), (9), 

&{L(O, 1; 0) n L(2,oO; W)} < j,M. 

Since this is true for every 8 > 0, we have, by (lo), 

R(L(0, 1; w) n I;(S,co; cd)) 6 j,M. 

Thus the lemma is proved. 
We can now prove 

THEOREM. Almost all Brownian paths L(w) in @-space have no triple points. 
Proof. By obvious modifications of the proof of Lemma 2.2, it follows that if 

0 ,< a < b < c < d then with probability 1, 

R{L(a, b; W) A L(c, cl; w)> < co. 

By Lemma 1.2, it follows that, with probability I, 

C{L(a, b; w) n L(c, a; fiI)> = 0. 
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Hence, if e > d, by Lemma 1.1, there is probability 1 that 

L(a, 6; w) n L(c, d; w) n L(a, co; w) = $3. 

Let a, c, b, d, e take all rational values satisfying 

(23) 

O<a<b<ccd<e<co. 

Then with probability 1, (23) is satisfied for each of these sets of values. Hence, with 
probability 1, there cannot exist t, t’, t” with 0 6 t < t’ < t” < co and 

This completes the proof. 

r(t, w) = r(t’, 0) = r(t”, 0). 

3. Further problems. We proved that in 3-space the A-measure of sets of the form 
L(a, b; w) n L(c, d; w) is finite; and therefore with probability 1, the A-measure of the 
set of double points of L(w) is sigma-finite. The question arises as to whether this result 
is best possible: i.e..what is the a-dimensional measure of the set of double points of 
L(w) (0 < CC 6 l)? Our conjecture is that with probability 1, the set of double points 
has zero A-measure, but that the Aa-measure (0 < a: < 1) is infinite, i.e. the set of 
double points has dimension 1. 

Similar questions can be asked in the case of Brownian motion in the plane. The 
methods of the present paper are good enough to show that the A-measure of the set 
of double points is positive with probability 1. However, this result is far from best 
possible. Our conjecture here is that the set of k-multiple points (k = 2,3, . . ,), which 
exists with probability 1, by (a), actually has dimension 2, i.e. there is probability 1 
that, for 0 < a < 2 the Ra-measure of the set of k-multiple points (k = 2,3, . ..) is 
infInite. 
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