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1. Introduction
WE consider the convergence of the series

3 sin(ma-+p), (1)

where {;1,} (k = 1, 2,...) is a sequence of constants satisfying 0 < u; < 2=
and {n;} (k = 1, 2,...) is an increasing sequence of integers satisfying

fy= L > 1 (2)
L

It is well known from the classical theory of trigonometric series that the
series (1) cannot converge except possibly for values of x in a set of zero
Lebesgue measure. Our objeet is to discover how ‘thin’ this set is for various
types of sequence {n,}. The first result of this kind is due to P. Turan who
proved, in 1941, that the series (1) converges absolutely in a set of positive
logarithmic capacity in the case

ny, = (kl)ﬂ’ Hi = 0 (k = 1, 2,...). (3)
It will follow from the results of the present paper that in the case (3) con-
sidered by Turan, the set of values of x for which (1) converges absolutely
has dimension 4, whereas (1) converges in a set of dimension 1.

The convergence, or absolute convergence, of the lacunary trigonometrio
geries is intimately related to that of the series

3 {((ng)) —x (4)

where {o,} (k = 1, 2,...) is a sequence of real numbers satisfying 0 < o, < 1,
{n,} satisfies (2) and, for a positive real number 8,

((B) = B—[8]
denotes the non-integer part of 8. We will consider the set of values of =
which make (4) convergent or absolutely convergent concurrently with the
corresponding sets for the series (1). Absolute convergence is considered
in § 2, and convergence in § 3.
Proc. London Math. Soc. (3) 7 (1957)



CONVERGENCE OF A LACUNARY TRIGONOMETRIC SERIES 599

Our discussion of the convergence of the series (4) leads naturally to the
problem of equidistribution of the sequence {((n,2))} (k = 1, 2,...). By the
result of Weyl (3), given any increasing sequence {n,} (k = 1, 2,...) of posi-
tive integers, the set of values of # such that ((n,2)) (k = 1, 2,...) is equi-
distributed in (0, 1) has full measure in the Lebesgue sense. Our object in
§ 4 is to examine the exceptional set of values of = for which ((n,z))
(k= 1, 2,...) is not equidistributed for different types of sequence {n.}.
Among other results obtained, we prove that if {n,} satisfies (2), then
((ng2)) (k =1, 2,..) is not equidistributed for values of # in a set of
dimension 1.

For notation and definitions relating to the theory of Hausdorff measures,
see, for example, (2). We need the following theorem which is a special
case of a result due to Eggleston (1).

TaEOREM A. Suppose I, (k = 1, 2,...) is a linear set consisting of N, closed
intervals each of length 8. Let each interval of I, contain n; ., => 2 closed
intervals of I, , so distributed that their minimum distance apartis py.q > 8j.47.
Let

P=NL
%
Then, if liminf Ny, pysq 8371 > 0,
k—+eo

the set P has positive AS-measure.

2. Absolute convergence

We first consider the cardinal number of the set of absolute convergence
of (1) or (4). For sets known to have the cardinal number of the continuum,
we consider the dimension in the sense of Besicovitch. This classifies linear
sets of zero Lebesgue measure by considering their measures with respect
to the class of Hausdorff s-dimensional measures 0 < 8 < 1.

The connexion between the absolute convergence of the series (1) and

(4) is given by
2N
((”" 217)) P
> sin(n; x—p,) converges absolutely.

The proof is trivial. The converse is not true, but we will see that the
infinite cardinal or dimension of the sets of absolute convergence of (1) and
(4) will always be the same. To save space we will state the theorems only
for the series (1). Theorem nA will be the theorem for series (4) correspond-
ing to the Theorem n for series (1).

We will see that the ‘size’ of the set of absolute convergence depends on
the rate at which ¢, increases. First we consider the case of ¢, bounded.

converges, then the series

Lemma 1. If the series Z
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In Theorem 16 of (1), Eggleston proves that, given y (0 < y < 1), there
cannot be more than a countable set of  for which ((n;2)) - y as k — o0,
Trivial modifications of his proof give:

TaeoreM 1. If{u,} (k= 1, 2,...) satisfies 0 < p, < 2mand {n,} (k= 1,2,...)
18 an increasing sequence of integers such that 1 < t;, < K < oo, then there
18 at most a countable set of values x such that

sin(ngx—p) >0 as k— oo.

CororLARY. Under the conditions of Theorem 1, there is at most a countable

set of values x such that > sin(ng x—py)

converges.

This theorem is best possible in the sense that the set of points where
(1) converges absolutely can have power X, For example, take n; = 2%,
e = 0 (k =1, 2,...), then (1) converges absolutely if x = pm= 2-9, for any
positive integers p, g. However, the result can be sharpened in the sense
that given {n,} with p < t, < K, for ‘almost all’ sequences {u,} there will
be no points 2 for which (1) converges. We content ourselves with proving

TuEOREM 2. Suppose the sequence of integers {n;} is such that
l<p<fh <K <.

Then there are at most enwmerably many pairs (z,y) (0 <2 < 27,0 <y < 27)

such that sin(n,z—y) >0 ask—>co.

CoroLLARY. Under the conditions of Theorem 2, there is a linear set Q with
cardinal number < R, such that, when y is not in @, there is no x with
sin(n,z—y) - 0; and therefore the series 3 sin(n, x—1y) does not converge for
any x, unless y € Q.

1p—1

Proof. Let e satisfy 0<e< s KT (5)

Let E, be the subset of the closed square 0 < o << 27, 0 < y < 27 such

bt jsin(n, z—y)| < e.

Since € < §, it follows that, for every (z,y) in Ej, there must exist an

integer r such that Ing Z—y—rm| < 2e.

Hence E, is a subset of the set F}, consisting of the closed strips of the plane
ny t4-Ir—2e < y < nyx-+flmr+-2e,

where ! takes all integer values satisfying

—2(n+1) < T < 2(mp+-1).
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Then F, N F,., consists of (4n;+5)(4n;,+5) = C;. closed parallelograms
which are congruent, equally spaced, and similarly situated. Let the pro-
jection on the a-axis of one of these parallelograms have length 3. By
elementary trigonometry it follows that, if n;, > 10,

5 < 16e . 16¢ ,
Mp—ng  Mll—1)
Hence, by (2), we have & < —ﬁ (6)
n(p—1)
Now the parallel strips making up F,, are separated by a horizontal
distance d = T—=%. Thus
Mg+
d>i>il>5, by (5) and (6).
Ny~ KE 1y

The gradient of the parallel strips of F},, is greater than that of either of the
sides of the parallelograms of F, N F, ;. Hence not more than one strip of
F, ., can have a non-void intersection with a single parallelogram of £, N F .

Suppose, if possible, (2, ¥;), (3, ¥,) are two points of ﬁ‘i‘f} which are in
i=

a single parallelogram of Fj, N F, ;. Then for every positive integer r, the
two points must be in a single parallelogram of F,,,. N ¥, ,,.;. But the pro-
jection of such a parallelogram on the x-axis has length which tends to zero

[=.2]
as r —> o0, by (6). Hence x; = z,. Thus the projection [ F; on the z-axis
i=k

has at most C,, points. But E; c F; (i = 1, 2,...), so the projection ofﬁEi

on the z-axis has at most C}, points.
Now if (z,y) is such that

sin(n,z—y) >0 ask— o, (7)

then (z, y) is in E; for all sufficiently large¢; thatis (x, y) isin fj ﬁ E,=E.
k=1 i=k

Since the projection of qu on the x-axis is finite for each £, it follows
=l

that the projection of E on the z-axis is at most countable. Thus the set
of 2 for which there is a y such that («, y) satisfies (7) is at most countable.
For each such 2 there are at most 3 values of y in 0 < y << 27 such that
(7) is satisfied. Hence the set of pairs (x,y) satisfying (7) has cardinal
number < N,.

We now consider the case of a sequence {n,;} such that ¢, —co. In this
case, there can be a set of power continuum for which (1) or (4) converges
absolutely.
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TueoreM 3. If {n,} is such that t, is an integer for large values of k, and
t, — o0 as k — oo, then the set of @ such that Y sinngx converges absolutely
has power confinuum.

Proof. Tt is clearly sufficient to prove that > ((n;x)) converges for z in
a set of power continuum. Let &, be such that # is an integer for k > k, —1.
Define a sequence {k;} (¢ = 1, 2,...) inductively by letting k; be the smallest
integer such that k; > k;_,, and ¢, > 2t for every k > k;—1. Let

o=,
nh

where 1, = 0 or 1 for each 1. Let E be the set of values taken by « for all
such sequences {7} (: = 2, 3,...). Clearly E has the power of the continuum.
Suppose « is in E. Then if k = k,,
N
N, T)) = Ly,
((n2)) P
where the summation extends over those ¢ for which %; > k. Hence

© oo o0 ki—1
() = [ E”k] . [ i ”k]-
"'z"’ ka, k;Zk Py ,Z;, k;, Mgy
Now when k = k;—1, ny/ny, < 27%, and, for k > k2, g1 /ny. < 3. Hence
ki—1
i
=Ny [1+2+ ] )
k=2k; Ny, 21 9i-1
d > e ]
and so k;ﬁ((nkm)) < Z S g

i=8
Thus for all = in E, the series > ((n;z)) converges.

Remark. The condition that ¢, be an integer in the above theorem cannot

be omitted. For, if {n,} is defined inductively by

n,=1, n,=kn,_+1 fork=23,..,
then it can be shown that > sin(n,x—y) converges absolutely for no
pairs (z,y).

Theorem 3 shows that, when ¢, is an integer, and £, — oo, there are some
sequences {x,} for which (1) converges absolutely in a set of power con-
tinuum. In fact if ¢, increases smoothly in some sense and Y #;! diverges,
one can prove that for almost all y (in the Lebesgue sense) there is no
value of @ such that ¥ sin(n, z—y) converges absolutely. This means that
ift, increases slowly and smoothly the series (1) will not converge absolutely
for any x unless {u,} is a special sequence. We do not make this idea precise
because we have not obtained nice conditions which are best possible.
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Instead we state a result which shows that the conclusion of Theorem 3 is
more or less ‘best possible’.

THEOREM 4. Supposen, =k! (k= 1,2,...)and0 <y <wmorw <y < 2m.
Then the series Y sin(n, x—y) converges absolutely for no value of x.

This is easily proved using the comparison test.

CoroLLARY. Suppose n;, = k! (k= 1, 2,...), then the series Y |cosn, x|
diverges for every x.

The above theorems show that if > #;! diverges, then the series (1) is
unlikely to converge for a set of values of x of power continuum. The
situation is completely different when ¢, increases rapidly enough to make
> ;! convergent. This is given by

THEOREM 5. Suppose {n;} is such that > ;- converges; then for any {u,}
the series Y sin(ng x—p,) converges absolutely for values of x in a set of power
continuum.

Proof. In view of Lemma 1, it is sufficient to prove the absolute con-
vergence of > {((n;x))—oy} for continuum many values of z. Let k, be
such that £, > 10 for k > k,. Let I, be the set of closed intervals of  such
that 0 <2 < 1, and 4

|((“kx))_°‘kl < W
k

Then I, contains at least (n,—2) closed intervals of length [, whose cen-
tres are distance nj ! apart, where

.
P T

N1

Each interval of I contains at least 2 intervals of I, ,, of length [, ,, whose
kot

centres are distance apart n;!;. Hence h I, contains at least 27(n;,—2)
k=kn

disjoint closed intervals of length [, ... Thus E = F] I, has a perfect
k=kp

subset, and therefore has power continuum. But, if # is in E, then
[((np ) —oy | < ; for k = k,,
e

and so > |((n;x))—oy| converges.

We now study the dimension in the sense of Besicovitch of the sets of
absolute convergence of (1) and (4). The dimension is interesting only in
the case where the set has power continuum since enumerable sets neces-
sarily have dimension 0. Various results can be obtained showing how the
dimension depends on the rate at which ¢, - c0. We prove only
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TrEOREM 6. Suppose A > 0, p > 0, p > 0 are constants, and {n;} is an
increasing sequence of integers such that Akr < t;, << pke for each integer k,
and {p;} is any sequence of constants 0 < p;, < 2. Then

(i) if 0 < p < 1, the dimension of the set of x for which 3 sin(n,x—p;)
converges absolutely is zero;

(ii) if p > 1, the dimension of the set of x for which 3 sin(nyx—p,) con-
verges absolutely is 1—1/p.

To obtain Theorems 6 A (ii) and 6 (ii) it is sufficient to prove

(a) the set where (4) converges absolutely has dimension at least (1—1/p);
and

(b) the set where (1) converges absolutely has dimension at most (1—1/p).

Proof of (a). Let e satisfy 0 < e << p—1 and s satisfy
14-€

p
For any such s we will prove that the set of x for which (4) converges

absolutely has positive A’-measure. Then the result (a) will follow by taking
values of e which are arbitrarily small.

0<s<1—

1 &
Put [2 km] =1,2,.), (8)
and let k, be a fixed integer such that
;ﬁ"i:— 2>, fork >k, 9)

k, exists since t;, > Ak? and p > 1-}e. Let P, be the set of « such that
0<z<1and 1
[((ﬂ'kx}) akl k1+( (10)

Then P, consists of a finite number of closed intervals, at least (n,—1) of
which are of the same length y,. If o) = 0 or 1, y, = (n k*+€)~1, while if
ay 18 not near 0 or 1, ;. = 2(n; k'+€)~1: in any case
1
Tovem, < 7% S e,
The centres of the intervals of P, are distant apart 1/n;,. Now define a
subset I, of P, (k = k,) as follows. Let

Sk = (nkk1+‘)_1 é Y- (11)
Let I, be a set of (n;,—1) closed intervals each of length §,,, concentric
with intervals of P, of length y;,. Each interval of I;, contains at least

(tr kg 1 ~<—2) intervals of B, ., of length y, ., by (10). Define I, ,, as a
set consisting of closed intervals of length §,,,, concentric with some of
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the complete intervals of I, N B, ., so chosen that each interval of I,
contains precisely 7, intervals of I, ,,: this is possible by (9).

For k > k,, suppose I, has been defined and consists of closed intervals
of length §,. Define I, as a set consisting of closed intervals of length
841 concentric with some of the intervals of length vy,.; of I, N B, so
chosen that each interval of I, contains precisely =, intervals of I ...
Write P :kﬁhIk. The conditions of Theorem A are satisfied with

: ky—1)1] 1+
Nesa = Maeg— 1)k, pgsaee-e 2 2_k”k+1[( uk! ) ] , by (8); (12)

Pra1 = Nt (13)
for large k, by (10) since k=1~¢ < }. Thus, by (11), (12), (13),
Nesa pra 8571 = (341 (k1)1 (my ktHe)t—
2 %{%)‘)kkﬂ+€}(l—ﬂ)(k1){p{1—s)—l—e},

since n;, > AF(k!)P. Since p(1—s)—(1+€) > 0, Nyy prs1 04 1 >c0as k — o0,
By Theorem A, AP > 0. But P is a subset of the set of x such that

(g @) — o] < k1<

for sufficiently large k. Hence this set has positive Af-measure. But for
in this set, the series (4) converges absolutely. Hence the set of @ for which
(4) converges absolutely has positive As-measure. This completes the proof.

Proof of (b). Let E be the set of x such that ¥ |sin(n, x—u,)| converges.
Suppose 1 > s > 1—1/p; then it is sufficient to prove that A*(E) = 0 for
all such s. Let e satisfy

0<e<l—p(l—s). (14)
For each z in E, let ky, k,,..., k,,... be the sequence of values of the integer k
for which

|sin(ng 2 —p)| = (15)

4k’
Then since (1) converges absolutely for this z, the sequence {k;} (i = 1, 2,...)
must have zero density. Thisimplies that there exists an integer N (depend-
ing on z in E) such that, when n = N, the number of integers ¥ < n which
satisfy (15) is less than en.

Let @, be the set of z such that 0 <<z < 27, and

. 1
[sin(mz—p)| < 77 (16)

Then @, c I, where I, consists of (2n,-}-3) closed intervals of length 1/kn,,
and centres at the points (u;+I7)/n, with [ taking integer values between
—2and 2n,. Since the centres of the intervals of I, are distance apart =nj?,
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the number of intervals of I, ,; which have a non-void intersection with a
single interval of I}, is at most

Ng41 2 < Er
k?’l"nk + &

m
Let M) I, consist of £y, closed intervals of length not greater than 1/mn
k=N
Then

v < (2ny+3) }Nn:t (m—“iw)‘nmul ;
N!
so that tym < Snﬁ,“—n:l—)z. (17)
Now suppose {k;} is an increasing sequence of integers such that
N<kh<kb<.. <kq<...}. (18)
and, if k, < r, then q <<er

The number of such sequences which differ in the range N < k << m is
certainly less than 2™,
For each k; (¢ = 1, 2,...) the number of intervals in rl I, differs from

Ngksm

the number in [ I by a factor < 2xk; since the intervals of I, have
N<ksm

length 1/k;n;, and centres distance apart 7/n;,. Hence for a fixed sequence
satisfying (18), the number of intervals of length 1/mn,, needed to cover

'n I is not greater than
kel (1Si<0)

N<ksm
Wy m = tNm f[l (27k;)
3(2wm}ff—Tw ms
by (17). Hence, by (18), we have
N!
w.N,m -<., 3(2m)em (m_l)f Inm (]9)

Thus, if Ey, is the set of values of 2 such that « isin @ for k = N, except
for a sequence {k,;} satisfying (18) where (16) is not known to be satisfied,
then Ey can be covered by 7y ,, intervals of length 1/mn,, = [, where

N!
Tam < 2PWy,, < l5mm‘m(m—_mnm,
by (19). Hence
NI 1 ¥ p— i +1—8. I—SN!
Pl < 15mm‘m(m-1)!nm(m—mn) = 15™me T ' 1

But n,, < p™(m!)?, and hence

r Nom I;In e ‘um(l-—s)l HMpem+1N | (m!)p(l-—s)—-l < l‘,m:\\fm:fmarn[e+,cr(1—e3)—1]’
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where v, ¢ are suitable finite constants, since m! > (im)™. By (14), it
follows that e4p(1—s)—1 << 0, and hence
Pymly—0 asm—>oo.

Thus A%(Ey) = 0. But E c |J Ey. Hence A%(E) = 0 as required.
N=1

To prove Theorems 6 A (i) and 6 (i) it is sufficient to prove

(¢) When 0 < p < 1, the set where (1) converges absolutely has dimension
zero.

This can be proved by making a few obvious modifications to the
proof of (b).

Remark 1. If this theorem is applied to the case n, = k! of Theorem 4
we see that, if ¥ is not a multiple of 7, then Y sin(n,x—y) converges
absolutely for no value of «, while if y = 0, 7, or 27, > sinn, x converges
absolutely in a set of power continuum but zero dimension.

Remark 2. In the hypothesis of Theorem 6, if one assumes only one-sided
inequalities to be satisfied by #,, then one obtains by the above method of
proof upper or lower bounds for the dimension of the appropriate set of
absolute convergence. In particular, if

=1, ng =2, Ly=Kk* (k=129 8..)
the series (1) and (4) each converge absolutely on a set of dimension 1.
The same methods can be used to prove the following

THEOREM 7. If {u,} is any sequence of constants 0 << p,, < 2 and h(z) is
any measure function of class 1,T there exists an increasing sequence {n;} of
integers such that the set of values of x for which 3 sin(n,x—p,) converges
absolutely has infinite measure with respect to h(z).

3. Convergence

Clearly the series (1) or (4) may converge without converging absolutely,
so that, in general the set of points # making (1) or (4) converge will be
larger than the set making the series converge absolutely. However, if
(1) is to converge, sin(n;x—u,) must tend to zero as k — co. Thus, by
Theorem 1, if ¢, is bounded for all k, then the set of convergence of (1) is
at most enumerable. We now see that if ¢, — cc, however slowly, as &k — oo,
then the set of convergence has dimension 1. Thus the situation is much
simpler than for absolute convergence.

THEOREM 8. Suppose {u,} is any sequence of constants, 0 < p; < 2m,
and {n,} is an increasing sequence of integers such that t;, — co, then the set
of values of x such that ¥ sin(n,x— ;) converges has dimension 1.

T See (2) for a definition of measure function of class 1.
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Proof. Let E be the set of x such that the series (1) converges. Suppose
s is fixed and 0 < s < 1. It is sufficient to prove that, for any such s,
A*(E) > 0. We prove this by defining a perfect set P and an integer j such

that, when 2 is in P,
sin(n;x—p,) > 0 as k- oo; (20)

and, for k > j,
k
8in(Ny,q —pgs,) and Y sin(n,z—p,) have opposite signs.  (21)
r=j
Clearly P is a subset of E, and so it is sufficient to prove that
AY(P) > 0. (22)
Now n;1* » 0 as k — oo, since 1, > 0. For k = 1, 2,..., let

g(k) = max‘40:T", su,;u—sﬂk], (23)
+1

h(k) = sug g(1). (24)
i
Then g(k) - 0, k(k) >0 as k> oo, h(k) decreases as k increases, and
h(k) = g(k) (k =1, 2,...). Put
L = Hih(k). (25)
Then L < MBIRsr_ (26)
T.I'ﬂ;k
by (23) and (24).
Choose an integer j so large that
n; > 100 and A(k) < fork > j. (27)
By (23) and (24),
ng =% > {{g(k)}~* = {$hk)},
and therefore n}=¢ > {3h(k)}*.
Since h(k) decreases, there is a constant C such that
Wit > CHRGIAGHD- G+ (r=10,1,2..).  (28)
Let R, be the set of closed intervals given by

1
2= (it (-1 (0 <E<hk),
k
with [ taking all integer values. Let S, be the corresponding set given by
1
T = ;;{#k‘H“'!‘(—l)’f} (—hik) < £ <0)
k

>0 forzin R,
<0 forzxinS,.

Each of the sets E,,, S, consists of closed intervals of length % (k)n;; ' separated

Then sin(n, .'c—-iuk)[ (29)
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by distances of either 7n;! or {w—2h(k)}n;*. By (27), there are at least
(2n;—1) complete intervals of R; in 0 <« < 27. Choose precisely n; of
these, and call this set I,. In each interval of I, there are at least

(1 222 —2)

N
complete intervals of S;,,. By (25), we can choose exactly {; such intervals
in each interval of I: call this set [;,. Then for any x in [, N I, (21) is true

for k = j. We proceed inductively. Suppose I, (r = 1) has been defined

and consists of closed intervals of length

8, = h{j—]—?‘)ﬂﬂ},. (30)
Let (I,m) be a typical interval of I.. There exists a point y (Il <y < m)
such that il
> sin(nx—p) <0 whenl! <o <y
5 (31)

itr
but Y sin(ngez—p,) >0 wheny <z <m
k=j

In (I,y) there are at least {(y—I)(n;,,.;/m)—2} complete intervals of
R;,,.,, and in (y,m) there are at least {(m—y)(n; ,41/m)—2} complete
intervals of S;.,.,. Hence, by (26) and (30), since 8, = m—I, we can choose
precisely {;., intervals of length 8, such that some of these are complete
intervalsof (I, ) N R;,,,, and others are completeintervalsof (y,m) N S; ;.
Call the set obtained by treating each interval of I, in this way I.,,. Then,
by (31), for 2 in I, (21) is satisfied with & = j+r. Thus the set P = ﬁ I
r=0
satisfies the conditions (20) and (21). We now apply Theorem A to this set:
—2h(j+r-+1
Ny = 18800084 Pri1 = 'ﬂ'_(‘i'f‘_) = Njleias
Tojir+1
and 8, is given by (29). Hence

-— n; e 1
N;+1 Pr+1 8;‘: . = n — c&‘"'gﬂrn}+1§{hu+r)}_(1—s)
Jr+l
n '
= —d bty by OB G},
Rjirs1

by (28) and (25). Thus
N1 pria 8571 = OfR(j+r)}4=9 > O, by (27);
and P satisfies (22), as required.
Remark 1. Theorem 8 A is not true for completely arbitrary {a,}: for
example it is not true if ;. = 0, since in this case the series (4) converges
only if it converges absolutely. However,if0 <8 <o, <1—8(k=1,2,...)

and ¢, - o, it can be proved that (4) converges for « in a set of dimension 1.
5388.3.7 RT
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Remark 2. By making some modifications to the argument of Theorem 8,
it can be shown that, with the same hypothesis, and any real number K,
the set of values of z such that

has dimension 1.

4. Equidistribution of ((n,z))

We say that the sequence z,, 2,,..., 2,,... is equidistributed in (0, 1) if, for
every l, m satisfying 0 <! < m < 1, the density of integers r for which
l <2z, < misexactly (m—I): that is, if

. — {l whenl <z, < m,
: 0 otherwise,

1<
then &rg[i ,.21 e,.] = m—I.

TaeorEM 9. The sequence z,, z,,... of real numbers is equidistributed in
(0,1) if and only if -
Eﬁf ; exp(gz,2mi) = 0

for every positive integer q.

This result is due to Weyl (3). By the method of Weyl one can prove
easily

TaeoreM 10. If {n} (k = 1, 2,...) is an increasing sequence of integers,
then the set of values of x such that ((n,x)) (k = 1, 2,...) is not equidistributed
in (0, 1) has zero Lebesgue measure.

The ‘size’ of the exceptional set of « for which ((n,z)) is not equidistri-
buted depends on the sequence {n;}. For example, it is known that if n,
is given by a polynomial in k& with integer coefficients, then the set of z
for which ((n; z)) is not equidistributed is enumerable. In this case 7, — 1
as k— oo. However, we first see that ¢, — 1 is not a sufficient condition
to ensure that the exceptional set has power N,.

THEOREM 11. There exists a finite constant C, and an increasing sequence
of inlegers {n;} such that
nk+1—nk < C (k = l, 2,...)
and the set of x such that ((n,x)) is not equidistributed is not enumerable.

Proof. We define a sequence {n,} for which there is a G5-set E, such that
E is dense in an interval, and for z in E, ((n,2)) is not equidistributed.
By the Baire category theorem, a Gj-set which is dense in an interval
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cannot have power < X, so that it is clearly sufficient for the truth of the
theorem to define such a sequence.
Suppose {A;} (1 = 1, 2,...) contains all the rationals p satisfying § < p < 4§,
and each rational occurs in the sequence infinitely often. Let
=5 (8=0,1,2,.) (32)
Put n, = 1. Suppose for some positive integer r, n, has been defined for
k < k,_,. We define n;, by induction in the range
L.kt (r=12.)
as follows. Suppose n;_, has been defined. Let n; be the smallest integer
greater than n,_; for which
cos(n, A, 2m) > 1. (33)
Since } > A, = 1, it is clear that

3
Ny—n < — < 247
& k-1 Ar
so that Ny —N < 100 (B =1, 2,...). (34)
kz cos(ny A, 2m) > ¥(k,—k,;) = 2k,,, by (32).
k=Fk,_1+1
1 ¥ k 1
= 2 r=1 . _,
Hence i ; cos(ng A, 27) > 5 5

Let I, be an open interval containing A, such that if  is in I,, then

kr

1
2 9 1
k. k; cos(n x2m) >1 (35)
Let, E=N UL
q=1r=q

Then E contains all points # which are in infinitely many .. Thus E
contains every rational in } << p < }, and is therefore everywhere dense
in the interval (§,}). Further, E is a Gs-set.
If « € B, then given N, @ is in I, for some » > N. By (35), there is an

integer ¢ = k, > N such that

1< _ 1<

i ;2; cosf((nyx))2n} = = 21 cos(n, @ 2m) > L
Hence, for any x in E,

11m 1 sup- Z cos{((ngx))2m} =1,

and therefore, by Theorem 9, ((n;)) is not equidistributed in (0,1). By
(34), the sequence {n,} satisfies the required conditions with ' = 100.
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It now becomes interesting to ask what is the dimension of the excep-
tional set of non-equidistribution for a sequence satisfying the conditions
of Theorem 11.

TreorEM 12. Suppose C is a constant, and {n;} an increasing sequence
of integers such that
Ny — Ny < C {k = 1! 2?"):
then the set of points z for which ((n;x)) is not equidistributed has dimension
zero.

Proof. Under the given conditions, there is a constant A such that

e <M (k=1,2,..). (36)
For e =1, 2,...; + =1, 2., put
t

Soul) =kglcos(nk:.-: 278). (37)

For any rational p > 0, let ¥, , be the set of  such that
\foul)| > put. (38)

Put a,, = [exp(m/logm)] (m = 3, 4,...): then {a,} (m =3, 4,...) is an
increasing sequence of integers such that

(1)
—mtl 51 asm— o0,

Ay,

Then if (38) is satisfied for infinitely many integers ¢ (fixed s, p), it must
be satisfied for infinitely many integers of the sequence {a,,}, that is

B = 103 n!-] IFL‘""”‘ 39)
contains the set of z such that
lim sup % ful@)| > .
t—+x
Given « satisfying 1 > « > 0, we prove that
A*E,,, = 0. (40)

This, together with the corresponding result for polynomials of sines
instead of cosines, implies the truth of the theorem by taking the union
of E,, fors = 1, 2,..., and all positive rationals x, and applying Theorem 9.

o
Now [ Vul) 12 dae =,

m

1
,u.‘ ?! (41)

80 [ Ryl <
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by (38). Now

d t
)| <2m3m

t
<2mA Y k, by (36),
k=1
< AL,

Hence, if ¢, € F,;,, there is an interval containing z, of length at least F;\ :

which is a subset of F,,;,. The total length of F,,;, is less than iz- 7 by
7
(41), so that F,;, can be enclosed in a finite set of not more than K,

intervals of total length 4—: 81 where
H

If 1, b,..., I, (p < K, ) are the lengths of a set of intervals covering £, ,
but contained in F,;,,, we have

B 47 1
L < gl

zl i |‘E;,(,ip[ < P-2 7
and therefore E B ( 53 Kl )u

since the real function 2% is convex. It follows that thereis a constant L ,,
and a covering by a finite set of intervals of lengths [,, [,,..., I,, of the set

F,, , such that "
B L, R
t=1

EXRT)
By (39) the set E,, lea_:jzﬂ.am# (I =3, 4,..) and therefore E,, can be

covered by a sequence of intervals of lengths 1, [,,... such that

2B < L > ax%
m=q

Since the series on the right-hand side of this expression converges (40) is
proved. This completes the proof of the theorem.

Remark. The method of proof used is good enough to strengthen the
result in Theorem 12. Thus the exceptional set of x for which ((n,z)) is
not equidistributed has zero measure with respect to the measure function
[log(1/z)]~< for every ¢ > 0. We have been unable to decide whether or
not this set must have zero capacity—this would follow if the measure
with respect to [log(1/z)]! is finite.
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By the same method of proof used in Theorem 12 one can prove

THEOREM 13. Suppose C' = 0, p = 1 are constants and {n,} is an increasing
sequence of inltegers such that

n, < Ckr (k=1,2,.),

then the set of points x for which ((n,x)) is not equidistributed has dimension
not greater than (1—1/p).

By constructing a special sequence {n;} one can prove that the bound
(1—1/p) of this theorem can be attained.

So far, in the present section, we have been considering sequences {n;}
which do not increase too quickly. They are certainly not lacunary, for
under the hypotheses of Theorem 12 or 13

liminf#, = 1.

k—0
The case ¢ — co is easily decided. For in § 3 we proved that the set E of
values of x such that > {((n;*))—a«} converges, 0 < « < 1, has dimension 1.

For 2 in this set E, (g 2)) = o,

and therefore ((n,2)) is certainly not equidistributed. We now show that
the condition (2) that the sequence {n,} be lacunary is sufficient to imply
that the exceptional set of @ for which ((n,)) is not equidistributed has
dimension 1. Zygmund, in (4), proved that the set of = for which

1
o 2
7 E cos(n,x 2m)

is everywhere dense in (0, 1), but his method does not seem to give the
dimension.

lim sup >0

{—+co

TaeoreM 14. If {n;} is an increasing sequence of integers such that
t, = p > 1, then the set E of values of x such that ((n; )) is not equidistributed
in (0, 1) has dimension 1.

Proof. 1t is sufficient to show that E has positive A*-measure for any s
satisfying 0 < s < 1. Let B > 1/(1—s). Choose C so that §; > C > 0,

and C1-B-s) - 3, (42)
Blog(1/C)] , 4 i
=[98 /2] 4 g, 3
o i [ log p ]+ "
where p satisfies (2). Then for any positive integer k,
Pate > g-f > 10. (44)
Ty

Let @, be the set of 2 such that 0 <« < 1, and
0 < ((ﬂrvx)) g c (?“ =1, 2:)
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Then @, contains at least n,, closed intervals of length
C
5, = g (45)
whose centres are distance n;! apart. Put

vy = [0";—*"“_2} r=1,2..).

Then, by (44). L e (46)

rn
and each interval of @, contains at least y, complete intervals of @, ;.
Let I, consist of n, complete intervals of Q,. Suppose I, has been defined,
r > 1, so that it consists of some of the intervals of @, of length §,. In
each interval of I, choose y, complete intervals of @, .,, and call this set I, .

Now let us apply Theorem A to P = ﬁ I. 8, is given by (45);
r=1
5 Cr+1
Prin > MGty N = M¥V1Vae¥r 2 o Mr+w by (46).

Hence Noi1prsa 871 2> (g)roa'l(ﬂm)l".

B}' (‘14), Ry = Ny C—ﬂ(r-]} = O‘»e("—ll, iy
Noprprn 37t = {01‘3‘14)}:-(7”3_3,

2 2
as r > o by (42).
Thus A*(P) > 0. Now, if = is in P, the lower density of integers ¢ such
that 0 < ((n,2)) < C is at least 1/v. By (43), if C is small enough,

1 10c.
v

— 00

Thus, for  in P, ((n;, z)) has too many members in the interval (0,C),
and is therefore not equidistributed in (0, 1). Hence P c £, and A%(E) > 0,
as required.
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