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MATHEMATICS

ON THE IRRATIONALITY OF CERTAIN SERIES

BY

P. ERDOS

(Communicated by Prof. J. PorkEN at the meeting of December 29, 1956)

Extending previous results of CHowLA I !) proved that for every integer
t>1 the series
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are irrational, where d(n) denotes the number of divisors of n and r(n)
denotes the number of solutions of n=22+ 4% In my above paper I re-
marked that T cannot prove that any of the series

oo oo

a(n) v(n)
n=1 »° NEIT

@(n)
tg ]

M8
™M

-

n=

are irrational, where @(n) is Euler’s ¢ function, ¢(n) the sum of the divisors
of » and v»(n) the number of distinet prime factors of n. On the other hand
by the methods used in the above paper 1 can prove without difficulty that
the two series
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are irrational, but I failed to prove the same for the two series
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The main difficulty seems to be that I cannot prove that for infinitely
many n
(1) max (m + d(m <min(m +d(m)).

m<n m>n
(1) can be proved with »(m) instead of d(m) (2). I cannot prove anything
about the series
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where p, is the greatest prime factor of n (if in (1) d(m) is replaced by
¢(n), a(n) or p, (1) becomes false).

1)  Indian Journal of Math. 12, 63-66 (1948).
) In fact this is essentially contained in 1).
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Quoting LaxpAvU 1) I remark that all these statements do not yet justify
writing a note. But I can (and will) prove that the two series

are irrational.

Denote o(n)= Y d*. Kac and I 2) econjectured that
din

§ ax(n)
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is irrational for every integer k> 0. We proved this for k=1 and k=2, for
k> 2 the proof seems to present great difficulties.
StraUus and 13) proved that if n,<n,<... is a sequence of integers

satisfying limsup log n,/log k=oco, then f % is transcendental. By a
modification of our method used there I cankgnl'ove that if limsup n,/k'= oo,
then § ?'IR does not satisfy an algebraic equation with integer coefficients
of degr:e not exceeding . I do not know to what extent this theorem can
be improved, I do not know if a series ic -:;; satisfying limsup n,/k=oco
can be an algebraic number. On the othke“r1 hand I cannot even prove that
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if m,>ck? then (Y %)2 is always irrational.
k=1

Theorem 1. The series
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are irrational.

First we prove three Lemmas.

Lemma 1. Let a,, k=1, 2, ... be a sequence of non-negative inlegers
such that

2) lim sup - S a4 < oo.
k=1

Denote by f(n) the number of k's 1<k<n for which a,>0. Assume that
f(n)—co and Hminf f(r)/n=0. Then

o0
ar

8 irrational.
1) Math. Zeitschrift 30, 610 (1929).
%) This was a problem in Amer. Math. Monthly 1, 264, (1954), for k=2 solution
by R. BrruscH, for k=1 solution by J. B. KerLrLy 60, 557, (1953).
Elemente der Math. 9, 18 Problem 154, (1954).
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The Lemma is known !). I do not give the proof, since Lemma 4 will
contain it essentially as a special case.

Lemma. 2. The number of integers n for which @(n)<x holds is less
than ¢ x. The same holds for o(n).

Since o(n)>n the Lemma obviously holds for o(n) with ¢=1. For ¢(n)
the Lemma is known %) but for completeness I give the simple proof.
We have
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Thus clearly the number of integers m <ax with m/p(m)>r is less than
¢;-x/r® where ¢; is an absolute constant independent of 2 and r. Thus the
number of integers not exceeding 2*+1x for which m/p(m)> 2* is less than

¢, 2ktly oz

(3) 92k 2k—1

But if ¢(m)<z, then if m>2 we must have for some k, k=0, 1,
2y <m < 241 z and m[p(m)> 2%, Thus by (3) the number of integers
satisfying ¢(m)<« is less than

x(l—i- E%){cx

k=0

which proves the Lemma.

Lemma 3. The number of integers n<x for which one of the equations
pk)=n or a(k)=n is solvable is o(x).

Lemma 3 is also known 3), but for sake of completeness we give the
proof. It will be more conveniant to prove the Lemma separately for
@(k) and o(k). We want to prove that for every ¢ there exists an x, so that
for x>z, the number of integers n<a for which @(k)=n is solvable, is
less than e 2. Choose first » so that 2">2/e. If k has r or more distinet
prime factors then ¢(k)=0 (mod 27), hence the number of n<a of the
form ¢(k), where k has at least  distinet prime factors is less than x/27 < ex/2.
If I has fewer than » prime factors, the ¢(k)>k/r, thus since g(k)<x we
can assume k<72, But a well known theorem of Laxpau %) states that

') This was a problem in the Amer. Math. Monthly proposed by me 62, 261, (1954)
solution by LorenTz. The proof of lemma 4 will be similar to the proof of LorENTZ,

#) Infaet TurAwn and I proved that the number of solutions of g(n)="z is cx +o(x),
(P. Erpos, Bull. Amer. Math. Soc. 51, 543-544, (1945).

%) For (k) this is due to SIVASANKARANARAYANA Priratand his proof easily applies
for d(k). For sharper results see P. Erpds Quarterly Journal 6, 205-213, (1935).
See also a recent paper by H. J. Kaxorp, Journal Reine und Angew. Math. 195,
180-195, (1055).

%) E. Laxpau, Handbuch der Lehre von der Verteilung der Primzahlen, Volume

1, page 211.
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the number of integers not exceeding y having fewer than r distinct
prime factors is less than

y (loglog y) 1
“ ¥ “Tr—Dtlogy
Thus for x>, the number of k<rx, »(k)<r is less than ex/2, which
completes the proof of the Lemma for ¢(k).

To prove the Lemma for a(k), we first observe that because of a(k) >k,
we can assume k <z. Write k=a®h where b is squarefree. If b has r or more
prime factors then ¢(k)=0(mod 27). The number of integers k<a with
a®>16/¢* is less than 2 3 i, <if

a>4fe
k=a%h<a with a<4/e and b having fewer than r prime factors is o(x),

by (4). Thus finally the number of integers n <= for which a(k)=n is
solvable is less than

, and finally the number of integers

_gx + %:c+o(:c) < ez,

which proves Lemma 3 for o(k).

The proof of Theorem 1 now follows easily. Denote by @, the number
of solutions of ¢(l)=k and by a’ the number of solutions of a(l)=k. We
have

=2

© 1 oo » © 1 ma,k

By Lemma 2 (2) is satisfied and by Lemma 3 f(n)/n—0 for both a; and
a; which completes the proof of Theorem 1.

Clearly the conclusion of Theorem 1 holds for the more general multi-
plicative functions considered by Kanorp ), but I expect that it will
hold for a much more general class of multiplicative functions, but I have
not yet succeeded in showing this.

Theorem 2. Let 1<ny<n,<... be an infinite sequence of integers satis-
fying lim sup n/kl=oc0, then

2l
kgl &R
does not satisfy an algebraic equation with integer coefficients of degree not
exceeding .

First we prove

Lemma 4. Let a; and by be two sequences of mon megative integers, the
sequence of a’s is supposed to be infinite. Denote by f(n) and g(n) the number
of k's 1< k<n satisfying a,> 0, respectively b,>0. Assume that there exists
an s so that for all sufficiently large k

(9) ay < k', by < &
1 See foregoing page, note¥).
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and that there exists an infinite sequence my for which

my
(6) > (@ +by) < eymy, f(my)=o(my), g(m;) = o(m;flog m;).

k=1
Further assume the following condition (C): There exists an absolute constant
Cq 80 that if iy and iy are two consecutive indices with b, >0 and b, >0, then
for every x satisfying i, +cyx <i, there exists an index k satisfying a,>0
and iy +x <k <iy+cox. Then

o0
i8 irrational.

Clearly Lemma 1 is a special case of Lemma 4. In Lemma 1 all the
b’s are 0 and m;=1; @, > k* is satisfied in Lemma 1 for every s> 1 (because
of (2)).

Put

A= ? E™ “J;:—‘ d ey By= 9‘5 + b‘;:’ T

To prove Lemma 4 we first have to show that for every &> 0 there are
7’s satisfying
(7) A;+B; <e, A;> B,

Assume that we already proved (7), then we prove Lemma 4 as follows:
If Lemma 4 would not hold we would have (x and v are integers)

® T 3 adah,

fem1

Choose 34%. By (8) vti? S: a—*_&"—*—b‘ is an integer. But by (7)

k=1

I=vt-13 B I 4o (4,+0B) (I, I' are integers, [9] < 1),

k=1

an evident contradiction, since by (7) 0<v (4,+#B;)<1, which proves
the lemma.
Thus we only have to prove (7). Denote by «; the number of indices

k< %' for which
(9) A+B.=>¢
and by f; the number of indices kg"—%" for which
(10) A, > B,
First we show that .

(11) xy=o0(m;)
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and that for a certain constant e,
(12) B vy

Clearly (11) and (12) imply (7). Thus it will suffice to prove (11) and (12).

We split the indices k< m,/2 which satisfy (9) into two classes. In the
first class are the indices & for which there exists a j such that b<j<k+1
and for which a;+ b;> 0. It follows from (6) that the number of indices of
the first class is not greater than

(13) ((+1) (f(m) +g (my)) =o(m,).

For the indices & of the second class ') we have by (5) and (6) (the dash
in ¥’ indicates that the summation is extended over the &< m,/2 of the
second class):

’ o 1 1 & -
z (Ak+'8k)‘(* 2 (a‘r+br) (;_l + tm‘i‘ )+Lz (ZI (ar+br)/tn mfﬂ) <
el >my =
< 2¢myft+ Y 2 “‘E;ZTIB = 2 ¢; myft' 4 o(m;) < n m!

L=my;

for all 5 if [ is sufficiently large, Thus the number of k’s of the second
class which satisfy (9) is less than

(14) E"ns—‘:ﬂ(”%)

since n can be chosen arbitrarily small. (13) and (14) clearly imply (11).

Now we prove (12). Let ;>0 and i >k be the smallest index for which
b;> 0. Assume; that ¢>k+c, log k& where ¢, is a sufficiently large absolute
constant. Then 4, > B,. This is almost obvious, since by (5) if ¢, is suffi-
ciently large

1 b; 1 i4

Ay—Bize— 3 e R 2 g
i>k+o,logk i>k+ologk
1 (k¢4 log k)# 8.4
;? —( telog k )(1+ §+§+"') >0
(i.e. the terms of ‘—i-‘_'—t drop off faster than a geometric series of
i=k4eylogk

quotient 2/3).
Thus if the above holds for k& and j < k is such that there is no b,> 0 with
j<r<k, then we have

(15) A; > By

Let now j and §’ be the indices of two consecutive positive b’s (i.e. b;>0,
b;;>0 and b,=0 for j<k<j). Clearly from (6)

2 (' =j)=o(m)

1) For the k of the second clan we have a4, =0, 1 =... =0, ;=b,=b,, ,=...=

bp4.1=0.
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where the dash indicates that j'—j<2¢, log m; and j<m/2. Thus
(16) 2" (' —1) =41 my+o(my)

where the double dash indicates that j'—j> 2¢, log m,, j<m//2 (if j<m,/2
<j’, then we put f’=”—2—"'). Let now j'—j>2¢, log m,. Let k,>j be the
largest index for which @, >0 and k& <(j+j')/2. By (C) we have
(17) ky > j+G"=1)/2¢ or ky—=j > ('=1)2 &
By (15) we have for j<k<k,
(18) A, > B,
(16 and (17) implies that
(19) 27 (ky=j) > (Fm+o (my))[2cq > cgm.
(18 and (19) clearly imply (12) and thus the proof of lemma 4. is complete.
With a little more trouble I can prove the following sharper

Lemma 4'. Let a, and b, be two sequences of non negalive integers. The
a-s are supposed to be infinite. Assume that

lim sup (@ +b,)"™* <t,

and that there exist an infinite sequence m; for which

S (@+by) < cymy f(m)=o(my), gm)=o(m,).

k=1
Further assume that (C) holds. Then

© Oeteeby
3o e
18 irrational.
The proof is very similar to that of lemma 4, only the proof of §,>¢; m,
is a bit more troublesome here.

00
Now we can prove Theorem 2. Put a= 3 #—L, and assume that
k=1

(20) dyot+dyat 4. +d,=0,l,<l,d, > 0, the d’s are integers.
First of all we can assume that for a certain c;
(21) ey < CgMys 1<k < o0,

For if (21) does not hold then lim sup n;.,/n,=oc0, and therefore
& 1 we 2 1 \mes1/m
-2(5)

ol e e = M4 i

thus « is a Liouville number and therefore transcendental, which contra-
dicts (20).
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Expanding by the polynomial theorem we obtain
dy o= § a—f, oMt dy = 3 -sif-".
k=1 ¥ k=1 ¢
(5) is clearly satisfied with s=1, + 1. Further since lim sup n;/k'=oco, there
exists a sequence n, for which lim n, /k{=occ. Now a,> 0 if and only if k
is the sum of [, n’s, and b,> 0 implies that k is the sum of /, —1 or fewer
n's. Thus by a simple argument
flm,) < Kr=o(ny), glny) < kb= =o(ni ™).
Further by a simple argument
"x
le (a;+b) < ¢ ﬁ'=0(“t,)-

Thus (6) is satisfied with m,=mn, . To show that (C) is satisfied we observe

that if b,>0 then k is the sum of say r n's, r<l,. Thus all the integers
k+(L,—r)m, i=1, 2, ... are the sum of [, n‘s. Thus

aﬁi‘llg-rllq > 0, i= ], 2,...

Thus in view of (21) (C) is satisfied with ¢y=1/¢,. Hence by lemma 4

oo
dyoh+dy o= ... +dy = 3 %‘3

-]

is irrational, which contradicts (20), and thus Theorem 2 is proved.
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