A PROBABILISTIC APPROACH TO PROBLEMS OF
DIOPHANTINE APPROXIMATION

BY P. Erpds axp A, Riny

Introduction
Let 21, 25, +++, 2, denote unimodular eomplex numbers

l&s]l =1, J=1,2---,n
We put 2; = ¢/(0 < p; < 2n) and

L Si= Yorad (k=12 ),
‘By & well known theorem of Dirichlet, for any integer w = 2 we can find o
positive integer & with 1 = I = «" and integers by, Ba, -+ -, by such that

{2} ot J‘Ei {jﬂljﬁ,"',ﬁ},

It follows for @ = 5 that among the power sums S, (1 = | = «"), thereiz at
least one for which

2r
|8 2 neos—.
o

This can be stated also as follows: For any choice of the unimodular numbers

2 (7 =1,2,--+, n), we have

Max | Si| =

® |5a5mmnl |z om

Jor any ¢ such that 0 < ¢ < 1, where A(e) = [2x/arccos ¢] + 1. (Here and

in what follows [z] denotes the integral part of 2.)

It is well known that Dirichlet’s theorem can not be improved., For in-

stanee, if o; = 2r/w’ (7= 1,2, .7}, wherew = 2is an integer, then among
the integers 1 £ &k S o" — 1 thﬂre is none for which all the inequalities

i ‘ 1 [
e by | < (j=1,2, s ),
where by , by, - -+, b are integers, would be satisfied.

A E_.umpla B:mmplc of G, Hajos (see [1], p. 16) shows that Dirichlet’s theorem
van not be much improved, even when we admit nonintegral values for &,
The example of Hajds is as follows: if we choose

S 2’1‘
¥i G 5t

(f=1,2--- :n}r
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304 F, ERDUS AND A. RENYI

then among the real numbers 1 = ¢ £ 6-5"" — 1 there is none for which the
relations

Z. (G=1,2,-- ,n)

G
would all hold, where by, by, -+, b, are integers. Similar examples could
be constructed for other values of w,

In the present paper we approach the same problems by an entirely dif-
ferent—probabilistic—method, Let €™ = " « 0™ « ... » 0" denote the
direct produet of n unit circles, and define a probability measure P on €™
as the direct produet of the uniform measures on each of the factors €',
In other words, we consider the set 2, 22, + -+, 2, of complex random vara-
bles, where 2, = ¢, and the ¢; are independent real random variables uni-
formly distributed in the interval (0, 2x),

We shall show in §1, by using standard methods of the saleulus of prob-
ability, that for every n > 1 and 0 < ¢ < 1 the set of those n-tuples of uni-
modular complex numbers 2, 22, ++ - , 2, (i.e. those points of (") for which
(4) Max | 8k | < en,

Iz k<iexpincd i)

L
‘E b

has positive measure [Theorem 2]. This proves the existence of an infinity
of essentially different sets z,, 2, -+, 2, with z; = &% (0 = ¢; < 2=) for
which the inequalities

hey 3.
2 d
can not hold for an integer k in the interval 1 = k < ™0 < ¢ < 1) and
with integers b; (j = 1, 2, -+ + , n), because (5) would imply | 8¢ | 2 en. (In
faet we shall prove atill more; see Theorems 1 and 3.}

In §1 we prove the existence of various sets 20, 21, -+, 2. of unimodular
complex numbers, such that many of their power sums are relatively small
{or, expressed in another form, such sets 20,2, -+ ¢, 2 of unimodular com-
plex numbers that the numbers 2, 24, -+, 2n are rather uniformly dis-
tributed on the unit eivele for many values of F [Theorem 4]).  Our method
is principially unable to yield an explicit construction of such sets, though
such a construction by some other method would be rather interesting.  The
reader, however, who is acquainted with the book [1] of P, Turdn, will imme-
diately see why the proof of the existence of sets with the mentioned proper-
ties is nlso in itsell not without interest. In fact our results show that the
inequality (3), which is a consequence of Dirichlet’s theorem, can not be
egsentially improved, e, the range of & can not be replaced by a range of
definitely smaller order of magnitude for n — =, Now in the book of Turdn
mentioned above, a series of important applications are given of lower esti-
mates concerning Maxa < | S | with a relatively small range (a, §) of &
Buch estimates have been found by Turdn; of cowrse his results on the “short

- BICCOS ¢

(5) = (G=1,2; ,n)

2
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range’ maximum of | S; | give only small lower bounds. Our results prove
that this is inevitable.

In §2 we also shall prove a result [Theorem 6] giving a lower estimate of
Maxlﬁk o | S| {and another [Theorem 5] of the maximal diserepancy of the
set 25 (j = 1,2,---,n}forl £ k& = N}, valid for everyrsetz, - -+, 2 of uni-
modular complex numbera which shows that the results of §1 are not far
from being best possible. Theorem 6 differs from the mueh deeper results
obtained by P. Turdn [1] in that it deals with the long range maximum of
| 8¢ |, while Turdn’s results are on the short range maximum of | Se|; it
should be mentioned that Turdn’s results are valid under more general con-
ditions (the z: need not be unimodular).

In §3 we call attention to some unsolved problems and to further possible
developments of our method.

1. Construction of particular sets of unimodular complex numbers

Tueorem 1. There exdsts for every integer n = 2 a sel 2y, 22, v+, 2o of
unimodular complex numbers such that, putting Sy = 2512 , we have'

(6 | 8| < A/ 6nlog (k + 1) fork=1,2 ...

Theorem 1 clearly implies

(4") Max | S| <en for() < ¢ <1;
1 bCoxp{ae? (6}

the slightly stronger relation (4) ean be proved by considerations similar to

those used in the proof of Theorem 1, but it does not follow from Theorem 1.

Thus we have besides Theorem 1 the following

TaroreM 2.  Thereexistzfor everyn = 2, a sel 21, 22, -+, 2o of unimodular
complez numbers such that, putting Sz = 2 fea 2y (k= 1,2, <=+ ), we have
Ml | Sj, | < on

1z kclexp(ne? 2)
foreveryein < e < 1.
Remark, Of course Theorem 2 does not contradiet (3), because
ot 2r
arceos ¢

for0 <e < lase™™ = ™ = 4 < 2x/arceose.

To prove Theorems 1 and 3 we shall need the following

Lavma 1, Letz gy, - 4 2o denote independent complez-valued random vari-
ables, each of which fa undformly distribuled on the circumforence of the undt
cirele:  Then we have, pulting ta = av + 20+ - + 2,

(M) P(|tn] 2 on) = 46~ A E ey,

! The inequality () is of course interesting only for k + 1 < &6, because for k + 1 5
&Mt Lhe inequality becomes Lrivial as | Su.| = n for any b
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for 0 < e < 1, (Here and in what follows P( --- ) denotes the probability of
the relation in the brackel,)

Proaf of Lemma 1. Let us evaluate the mean value of | & el

denate by M(| ¢ |) where A is real. By our suppositions
M(| & ) = MITiw ™) = [M(] &)1

| which we

and thus
A 1 i Aoang J n L
® D = (o [ ¢ an) = @@,
where foz) denotes the Bessel funetion of order D,
{(—1)"@=)" “’
(9) Slz) = ;z_}; e
As
ats e mi:‘_w«
(10) Golir) = z; F = E_I'F_ - !
it follows that
(11) M{ &) = ™

Let us denote by @(w) the real part of the complex number w. As the vari-
ables 2;, —#, iz and (—dz;) are identically distributed, ®(z;), ®(—z),
i(7z;), and ®(—iz) are also identieally distributed. Taking into account
that for w = u 4+ @ we have

lw| =&+ = +2Max(|ul,|e])
= /2 Max (®(w), 0 —w), ®(1w), 6 —dw)),

we obtain
'Il.lﬂj |fﬂ| s ’V’E Max (R{$a), R{—1{a), Glifa), Eﬂi—ﬁ,'ﬂ]l}-
It follows from (12) that for X > 0
(13) P ta| = en) = 4 PO = en/+/32),
and thus

Aen
(14) P{I?.l:__*m}éiP(l explrnlzexpﬁ)-

Now we need the well known inequality of MWarkor aceording to which for
any nonnegative random variable £ we have

P( = 4) = M(8)/4
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for any A > 0. Applying this inequality to the probability on the right of
(14), we obtain, taking (11) into aceount, that

1 hen Az A
(15) P(lﬂxphhléexpﬁ)scxpn(g—ﬁ).
From (14) and (15) it follows that

{16) Plliw| = en) = dexp ﬁ( v;—)

for0 <e¢ < 1and A > 0. Choosing for » the value A = ¢+/2, we obtain
the assertion of Lemma 1, which is therewith proved.

To prove Theorems 1 and 2, we start from the remark that if z; is uni-
formly distributed on the unit circle, the same is true mgarding g for k=1,
2, -+« . It follows that if the random variables 2;, 2y, - -+ , 2, are independ-
ent, and aa.ch iz uniformly distributed on the unit cirele, the rnndum variables
B = E:.ﬂ z; are all identically distributed, and we have by Lemma 1

(17) P( Si| = en) < 467" 0<e<1),
It follows from (17) that
(18) P( Max | 8 | = m) < 4Ne
1SESN
Choosing N < 3""* we obtain
(19) P( Max | 8| = cn) <Y
I Shlexp(no®d)
which implies the existence of a set 2, 2, -+, 2, with |z = 1
: 2
(= 1,2, --- ,n), for which | 8: | < enfork < 3™,

This proves Theorem 2,
To prove Theorem 1, we deduee from (17) that

4
{20 P(| 8y | =2 vimloglh+1)) = TR (k

]

l:| 2! o 1}'
Thus we ohiain

a2 m gy VR s Ly

}:{]

ag

- 1 1 “dr 1
E{k-{- 1]={§+L @4

This implies the existence of sets 2, 22, - - - , 2. for which

| 8]l < v6nlog (& + 1) for k=1,3, -+
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Theorem 1 is thus also proved .

For wvalues of ¢ near to 1, the range 1 = k = N for which
Maxizizx | 8:| < on, for a suitably chosen set 21, 25, +++, 24, ¢an be con-
siderably enlarged. This 15 expressed by

Turorem 3. There exisls, for every n = 10 and every e with 0 < e < %,
a&el &, 85, -, 20 of wnimodular complex numbers such that, putting

Si= Xz (b =1,2, ),

we have
Max | 8| < nil — &)

[éﬁﬁug,‘pn-ll-!h

Proaf of Theorem 3, We have clearly
r wid
f e“"“"'dw{f & dp + LT,
i 1} 2

Introducing the new variable z = /23 (1 — cos ¢}, we obtain
- AorvD gy
hooap . L g
.';E “r"{xﬁl Vi-a/m

Asl/4/T —t <1 4 tfor0 < t < 3, it follows that,
'l' B?«. L] i 1 -’-w 3 ‘) o
[T 12 = o —gli L.
ia"' dﬂ{ﬁ(ﬁﬂ dm+4lua:e i +2.
Thus we obtain

1 pt* b 1 1
(22) g_’;r E’“"“’dan{—'“":—ezﬁ(l+'ﬂ-)+§

We follow an argument essentially the same as that used in the proof of
Theorermn 2. Taking into account that for any complex number w and any
positive integer h = 4, we have

(23) |w|§~l-—. Max m(wexp—&r),
T dgrsh—=l i
W] E
further that A
Stexp—-——z. 2; exp — 2’“)
=1 hik

has the same distribution as 8, , we obtain for any & = |
_lir. can be seen from the argument that the sssertion
| Bk < +/Bnlog (k + 1) h=1,2 =)
could be replaced by | 8y | < +/in log (k + 4) or more generally by
| 8| < 21+ &n log (k + @& for any & > 0.
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P(l|&8:| zn(l —¢) = 1“'(I“£]"|:i£s|.hx_l rﬂ(Ep exp — EWT#) = a{l — &) nﬂﬂ%),
which implies
(24) P(|S| zn(l —e) = hP(m{Sﬂ =n(l —¢) nus%).
Thus we obtain ’
P18 | =z a(l —&) = hP(if:“' | = B:!i'pi nhll — &) cus%})
8}. n
. T lrg)
exp {?\{1 — £) cos ‘—E]
Adfor A > 4, % < "/4\ v/ 2#n, it follows from (23) that
P(Ma,x | 8] = n1 = s})

(25)

A

1ShsN
& (1+-1— ex n(1~(1~e}mi) ;
< Nh # 5
E A 2rh
Let us suppose i = 10and 0 < & < % and choose
@17) W
and

(28) h=[r/'/i—l]—|—l_

It follows from (26), (27), and (28) that
£ (Mﬂ.x | 8| = mll — g}) < 4N eI,

Iﬁis.ﬂ'
Thus
Pl Max |8.| = a1l — s}) <1 if N < (lfier—1)-1
1SEEN
Thus there exist sequences 2, 22, -+, # of unimodular complex numbers
gich that
Tax | 8| =< mll — e
ks (lonem—1y-102

Theorem 3 is therewith proved.

It iz es=y to see that by a slight modification of our argument we could
prove the existence of a set z, 22, ++ , 2. of unimodular complex numbers

for which assertions of the type of Theorem 1 and Theprem 3 hold simul-
taneously; of course the constants figuring in these theorems are to be
modified for this purpose. We obtain this way that, for n = 10 and
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0 < & < %, there exists a set 41, 22, -+« , 2 of unimodular complex numbers
such that, putting S = ¥ o , Wo have

|8:| = vbnlog (k + 2) for k= e

and at the same time
|8 =n{l — &) for k= (Bane™ "),

In our Theorems 1, 2, and 3, instead of considering successive power sums,
Le, S, Sy o0ee Sy, wemay consider Sg, Sk, 00 Sy, Where By g vee
kx is any set of different integers. We formulate only Theorem 2 in this
generalized form.

Taeorem 20, Leln 2 2beanarbitraryoteger, 0 < e < 1 and &y, kg, -+,
ky an arbitrary set of different integers, N < 3¢™™. Then there can be found
unimodular compler numbers 7, 20, <+ , 2. sueh that, putting S = 3 1 25 ,
we fuie

Max |8, | < en.
1Sr =N

The results proved up to now give no information whatever about the
numbers 2: , g3, -+ , 2, for which all the values | 8, | (1 = k = N) are rela-
tively small, except the existence of an abundant sel of such n-tuples. Never-
theless we can say something about the numbers z; figuring in our theorems,
bv a shight modification of our argument.

In fact we can prove that the numbers z; (7 = 1, 2, ---, n) in Theorem 2
can all be chosen to be roots of unity of order p, where p 15 a prime greater
than ¢"*, The medification of the proof eonsists in that we suppose concern-
ing the random variasbles z;, not that they are equidistributed on the unit
cirele, but that they take on each of the values p* (h = 0, 1, +++, p — 1)
where p = ¢ with the probability 1,/p; here as mentioned above, p is a
prime, p > ¢"*, In place of the fundamental formuls (8) we obtain, pro-
vided that k is not divisible by p, putting again §, = 2 52},

L2f2] raq 48 ’
(29) M(| €M) = [I + i %+ D 1”"}

r=p Tl

where | b, | £ 1 forr Z p. Thus we obtain
(8) M) = NS VE,
and therefore Theorems 1 and 2 remain valid with the additional requirement
that 23, 22, * -+ , 2, should all be roots of the equation z* = 1, where p > ™
is o prime. Theorem 3 can also he proved with this additional requirement,
but in this case we have to suppose of course
p > (1" "1

We ean develop our results somewhat further by considering not only the
power sums 8y = » . 2 for positive integer values of , but also the sums
S. = ¥ 1127 for real values of a.
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In this direction we can prove the following result:

THeorREM 1b, There can be found for every n = 2, a set 21, 22, -+, 24 of
unimadular comples nmbers
2y = g™ 0 Ser<2r;j=1,2 - n),

such that, putting S. = 2 i1 ¢ where « is real, we have
| 8a| = Vénlog (evn + 1) + 20(Vn + 2)
for any & = 1/[v/nl.
Proaf of Theorem 1b, Let us choose numbers 2; = ¢ for which
Ehd] S VROEGFD  (h=1,2-),

which is possible according to Theorem 1, Let us put m = [+/n] and
wy = 27 . Then we have

(30) }:Ew, = Viin log (an/n + 1) for a=£,kn1,2,-“,
3’—.

Asforz = ¢*(0 £ ¢ < 2#), we have

(31) | —2"| = (8 —a)2r

if 0 < a < 8, it follows that

(32) + =

| = | Z “,h'rh
1l'---i.

for k/m = g < (k 4+ 1)/m. Thus by (30) and (32), for # = 2 and any

azl/m,

| 8. = V6n log (av/n + 1) + 2n(+/n + 2),

which fmplies the assertion of Theorem 1b,

Tt follows simply from our results that there can be found a 2 e - i
of ummudular mmplex numbers guch that for no & < %" «*2 do all t.he num-
bers 2 (7 = 1, 2, , ) lie on an are of the wnit cirele of length 2 arceos e:
because if thm Were 8o, then, for the get 2, &, <« , 2, figuring in Theorem 2,
for some k < 1" we would have | 8| > ne, m contradiction with The-
oremn 2, But in this way it is impossible to deduce the existence of sets 2,
2y, -, 2 of unimodular complex numbers for which 2y, 25, +~, 2n donot
all lic on an are of length  with ¢ < [ < 2x for some & < (1 + &)". Never-
theless this is & consequence of Theorem 1, but to deduce it we need the finite
form of Weyl's theorem due to P. Erdds and P. Turdn.

Let us denote by N.'(x, 8) the number of those among the numbers
zi(zs = 50 2 ¢y < 2035 = 1,2, -+, n) for which

0oz he;<f < 2r (mod 2x).
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Agcording to the theorem of Erdés and Turin [2] we have

{_ﬂ {Z‘Jﬂ ( |S:¢r |)
H | M EErt E

where A > (} is an absolute constant and m = 1 is an arbitrary integer, If
we choose the unimodular complex numbers 2, 2, - -, 2. 50 as to satisfy
Theorem 1, it follows from (33) that we have for k = 1, 2, -+

v’anlug{u+ )
<4(z+Z

(33) N (a, 8) —

@) | NP, ) — L0

2r
Choosing
&l 1
=y [1/ Tog (k + 2}] '

we obtain

‘Ni”fa,ﬂ}_ﬁ—a (Viim

T 2x
(35)
w53 m+m
Thus we have
NP, 8) B —a| _ ellog »)™
{26) T = N for k = n,
and further putting & = (log (k + 2))/n,
7kl

@ |Felad Boo|gaviln! o DEOBED L,y

where ¢, and e; are positive constants.  As /8 log (g/8) — 0 for 6 — 0, it
follows that the points 2 i zg, sew 2 are asymptotically equidistributed on
the unit cirele for n — = and (log k) /n — 0.

The result obtained is expressed by the following

TaroresM 4, There cxisls for every noa sel 21, 52, - -, 2. of unimodlar
r_ampier m{mberﬂ such that, denoting by N (a, 8) the number of those aniotg
s), 25, -, 25 which are lying in the are (o, 8) af the unil eirele, we have

ikl 12
Nalah) B2 < o vi(ig})
T | ]

f

for ke = & — 2, where ¢; i3 an absolute constant and 0 < § < 1,

Theorem 4 follows by combining the inequalities (36) and (37).
It follows from Theorem 4 that there exist unimodular complex numbers
#1, 2, voo, 2, such that; forany ¢ > 0 with 0 < & < By, for no
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k = exp [Byne'(log 1/e)™] does there exist on the unit circle an arc of
length =2x¢ which does not contain any of the numbers 25, 25, -+, 2% ;

here By = 0 and By > 0 are absolute constants,

2. Results valid for all sets of unimodular complex numbers

To show that Theorem 4 can not be essentially improved, let us consider
arbitrary unimodular complex numbers z; = €%(j = 1,2, -+, n). Let us
choose an integer w (1 < w < n/2); according to Dirichlet's theorem, we can
find a positive integer & < «™*! such that

Feia; 1
e o a
forj = 1,2, -+ -, [n/wl, where the b; are integers. It follows that
el 1)
W (-3%) a1
7 wir Gea

with some k < o™ < ('™, Thus we proved

Teuonum 5. Let 2y, 22, -+, 2. denofe arbitrary unimodular complex num-
bers, and w > 1 an integer (v < In). Then we have

NOB) _f—a

1
=
T 2r

M —.
ax = 5o

Max
tzkzoini] tZacictn

To compare Theorem 5 with Theorem 4, let us mention that Theorem 4
can be brought to the following form:
Thecrem 4 asserts that forany e with 0 < e < g andn = 2

N, 8) _ 8 —

o

Min Max Max
n 2

Tibge " En 1SS [I4e) b2 olf<in
where 0 < Ay(e) < eav/e (log 1/6)""; and Theorem 5 asserts that

N (a0, ) _B—a
gt 2r

< 'ﬁlie}j

Min Max Max

= ﬂz(E},
mrEse Ea TEES (I4e)" IS o< in

where

(=1
e > g
¢, €a, and ¢; being absolute constants. Thus Theorem 4 and Theorem 5
each shows that the other is not far from being best possible,

Bimilarly we can prove a theorem which shows that Theorem 2 can not
be essentially improved. Let 2, 2, -+, 2, denote an arbitrary set of uni-
modular complex numbers.

Let us suppose 2 = ¢ = n — 1 and let us denote by r the least integer
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=¢. According to Dirichlet’s theorem, if 2; = ¢ ¥4 we can find an integer
I < (4wn /7 + )™ such that

b 2 Pt

| _b*‘ = lmn v F 11
forj = 1,2, -+, v 4+ 1, where by, - -+ ; by gre integers, Now let ue put
iy, = z‘,H, v ey | 2 ; according to a theorem of Cassels [3], there

can be found an integer h < 2(n — r) such that (Y= " wh) = 0; it
follows that

ém("‘g!ﬁ}éc?""”mméféc.

Thus we have proved
TreorEM 6. For any sel 21, &, -+, 2, of unimodular® compler numbers,
putting S = 2 =12, we have for 2 < ¢ = n — 1

Max 18] = e
Lk {des opdin)s+E0n

3. Some unsolved problems

{a) Tn $§1 and 2 we hove shown that there exist positive functions fi{e),
Ffa(E), A(e), Aale) (& > 0), all tending to 0 for ¢ — 0, sueh that, putting

1
Alnyg) = = Min Max |8 |,
e || "'n L5k= (144
2il=

ol k)
Bln, ¢} = Min Max Max Ny {q’_@.} = .&‘;a -
T LSks (1he) bSachoty b 2
we have
file} £ Aln,g) S fule)
and

Ale) = Bin, £) = Asle).

The exact orders of magnitude of A(n, £) and Bin, £) for £ — 0 remain
however unknown,

(b} Dirichlet’s theorem asserts that for any set 2, 2, -, 2 (n = 2) of
unimodular complex numbers, and for any mt.eger w > 2, there can he
fuund an mteger I in the interval 1 = & = " such that thc- numbers 2| ,
24, -, 2 are all lying in an interval of length 47/« on the unit cirele, and
thus an interval of length 2x — 4/« remains free from the numbers zf .
Probably this iz not a best possible result, and 2x — 4w/w can be replaced
by a greater number, but nothing i3 known in this direction. ©Moreover

3 It iz clear from the proof of Theorem 8 that, instead of | & | = 1, it suffices to sup-
pose | 2y | =1,
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it remains completely unsolved whether there exisis a function é(e) > 0
(0 < e < 1} such that for any set 21, 22, - <+, 22 of unimodular complex num-
bers, there can be found an integer &, with 1 £ £ = (1 + £)", such that the
numbers 25 , 24, - -, 2. leave free on the unit cirele an are of length Z8(s).

(e} Finally we should like to call attention to the following fnets which
have not been used explicitly in this paper.

It can be shown by standerd methods of the caleulus of probability that
if 2, 2z, ¢, 2 are independent random variables; each of which iz uni-
formly distributed on the unit cirele, then, putting

s=3d4, &=4/2a), md 4P = 4/ g5,
."-'1 ﬂ- :*

the joint distribution of the random variables

i) o L gt ot

R S TR | &8 3 im 3
where r is fixed and J; 2 ki ford =50,/ = 1,2, .-+, r), tends for n — =
to the 2r-dimensional symrmetrical normal distribution with the density

function
I 2y 2
o Bxp 5 :z__; ar,) :

Thus the variables £, 9% are in the limit independent for n — =, It
geems that this fpet has interesting consequences concerning diophantine ap-
proximations, We hope to return to this gquestion in a forthcoming paper.
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