Problems and results in additive number theory

par M. P. Erpbs (Haifa)

In this lecture T will discuss several problems in additive
number theory. They will not have much in common, excepl
thal they are all combinatorial in nature and that probabilily
theory can be applied with advantage to mosl of them.

1. Lel a,<a,< ... be an infinile sequence of inlegers,
denote by f(n) the number of solulions of n=a,--a, where
;- a; counts twice if i £ and once if i=j. Turdn and I (*)
proved that f(n) ean nol he conslanl from a cerlain poinl on.
Our proof though shorl and simple used lots of function
theory (Fabry's gap theoremi. But G. Dirac (*) observed
thal the theorem is ftrivial, since if n=2a, jin) is odd (be-
cause of n=u, ), bul il n is not of this form then f(n)
is even. Dirac (*) observed lhat the definition of f(n) can be
modified in two ways. Define f'(n; as the number of solu-
tions of n=—u,-a;, where all solulions count once and in
{"(ny only the solulions with iz are permitted. He and
Newman (*1 both proved thal f(n) can nol be constant from
a cerlain point on, for if f/(I-+1)—f{U4+2)— .. we would
evidenly have

HE+ D)=L

=1
LT

:Pz{z)—l—al"i_z, fa+1)=ad, (1)

where P,(z) is a polynomial of degree <<I. If z—>—1 on
the real axis, the richt side remains bounded. hul the left side
approaches infinity, since both terms on the left side are
positive and the second lends lo infinity. Thus (1) can not
hold, which proves the theorem.

(Y Journal Lendon Malh, Soc., 18 (1941), 212-215.
(%) Ibid., 26 (1951), 312-313,
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Dirac (*) also conjectured that f*(n) can not be constant
from a certain point on. This and considerably more was
proved by Fuchs and myself (*). Turin and I (*) conjectured
that if f(n) >0 for all sufficiently large n then limsupf(n)
=oc. This conjecture has not yel been proved and seems
very difficult. A still stronger conjecture would be that if
a,<_ck® for all k, then lim sup f(n)=o0. The best result we
can prove (") is that in this case lim supf(n)>2. Turén and
I (') further conjectured that

n

Zf(f{)—— en—+o(l)
k=1

is impossible. Fuchs and I (") proved this conjecture. In
fact we showed that for ¢ >0

n

f(kh=cn +o —-ii—l) (2)
;“ & ((logn)r -

Fy

is impossible. The same holds for

;f’(ff) and ;f”(ff) ;

If a,=—=Fk* one comes lo the problem of lattice points in
the circle of radius n*. Here Hardy and Landau (*) proved
that

n

Zf(k)_ﬁ(n) +0[(n-logn)%] (3)

k=1

does not hold. (3) is stronger than (2) by a factor (logn)?,
but we proved oul theorem for general sequences and not
only for squares. Further our proof is very much simpler
than that of Hardy and Landau, in fact we only use the Par-
seval equalily.

One could have tried fo prove the conjecture: a,<c-k*
for all & implies lim sup f(n)=2oc by proving that if for all k,
a, < ek® 1then

lim sup?—llZ}'(k)zzoo. {4)
D k=1

(*) Our paper will appear in the Journal of the London Math. Soc.

(*) Ibid. {*). The delails of the proof are given by A. Svéar, Jour-
nal reine und angew. Math., 194 (1955), 132-133.

(*) Laxpau, Zahlentheorie, Yol. 2, 233-239.
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Unfortunately (4) is false. In fact in a cerlain sense it ig
false for almost all sequences. Consider the space of all
sequences of integers. We introduce a measure into this
space as follows: Consider an infinite number of copies of the
poinis  and 1. In the n-th copy I, the measure of 1 is an™?
and of 0 is 1 —=n~*. This defines in a well-known and obvious

way a measure in the produet space lI I, (if for all n the

n=1

measure of both 0 and 1 is we obtain the Lebesgue measure

{). 2
on the interval (0, 1)). Thus we defined a measure in the
space of sequences of 0-s and 1-s. Now we map a sequence of
0-s and 1-s into a sequence of integers by putting n into our
sequence if and only if the sequence of 0-s and 1-s cointains 1
al the n-th place. Thus we introduced a measure in the space
of all sequences of integers. Speaking slightly imprecisely we
can say that the probabilily of n occurring in our sequence
equals an™*, or more precisely: The measure of the set of
sequences where n occurs equals an™* It is quite easy to
show that for almost all sequences a, < a,<... (i.e. except
for a set of sequences of measure 0)

qk=[1+o(l_)]z‘(‘%.

Wilh somewhal more trouble I can prove that with prob-
ability 1 for every r

|t_',"f.\n)_]":= e X—+0(X), e,=c¢,(2).

[

n=

Thus (4) is false for almost all sequences. Similarly it can
be shown that the densily d,=d,(a) of integers with f'(n)=1

(or f(n)=21) exists and d(z)—>1 as z—>o0 (for

>

every I,).

2. Morve than 20 years ago Sidon asked the question if
lhere exisls a sequence a,<_a,<C ... of integers for which
f(n) >0 for all sufficiently large n, but lim % =0 for all
¢ >0. Using combinatorial and probabilistic arguments I (*)
proved the existence of such a sequence, in fact I proved that
there exists a sequence salisfying for n >n,

0<f(n)<clogn. (5)
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[ did not succeed in conslrucling such a sequence bul proved
that in a cerfain sense almos! all sequences satisfy (5. A few
davs ago i noliced that this fact can be made more precise
and that my original proof can be simplified and made more
intuitive. Consider the space of all sequences of integers
where the probability of n oceurring in our sequence equals

log n\i 2\ .

e-,( ) where ¢, >[——) . It is easy lo see thut for almost
i i T X

all sequences

-2

k
=1+ 0()] o s -
a=[4eW] Taigk

Now we prove that for almost all sequences jini=0 holds
only for a finile number of n-s (i.e. for almosl all sequences
f(rﬂ>0 for n > n,). Denote b\ E, the event that f(n)=10 and
by P(E,) we denote its probability. E," denotes the event that
i and n—Fk do not both occur in our sequence. Clearly E,

. ) n T
can occur only if all the ES* occur 1 < k<T-. The evenis
B8, 1_-:;‘{<—f—;v are clearly independent. Thus

e [log k-log (n — k)]g-*")

En] p r ““) = - . 41
e 1 y . I ( [kin—Hk)® /
]:k\%—: |<k<-—
:e_\'p[ ([1-;—0 13 ] Z L]J
|—;\ U‘I — I{'l ]3 i
15k< g

i . T 1

==y (— [T+4+o(1)] e logn ?) g s
P(E,)<co. Thus by the Borel-Cantelli lemma the
n=1

probability that f(n)=0 kolds infinilely often is 0, which
proves our assertion. Il can be proved though with some-

1

(P
what more lrouble hat if c1<{—1_- f._ then for almost all
sequences f(n)==0 holds infinilely often. By somewhat longer

f L
& o - 2 .
compulation we can prove thal if ¢, f‘)( = ] then there exists

a ¢, ==c.(¢,) >0 so that for almos! all sequences f(n) > c;logn
holds for all but finitely many n.

(%) Aecta Sei. Math. Szeged, 15 (1951), 255-250,
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Next we outline the proof that for every ¢, >0 there exists
a cg=cy(¢;) o that with probability 1 for all but finitely
many n we have f(n)<e¢slogn. To show this denote by
E, ., lhe event that f(n) > ¢,logn. and as before £, is the
event that both k and n—k do not simullaneously occur in
our sequence. Clearly I, .. holds only if E, fails to hold
for at leasl % log n values of i, Now by slandard but some-
whal lenglhy arguments of probability theory il follows that
for sufficienlly large ¢;==¢;(¢,)

1
n'*s ’

P(E..) <

Thus by the Borel-Canlelli lemma it follows that wilh prob-
ability 1 f(n) > eslog n holds only for finitely many n.  This
completes the proof of (5). In fact we proved thal a somewhat
stronger result, namely thal for almost all sequences and
sufficiently large n

clogn< f(n)<eclogn. (6)

Using standard methods of probability theory it is not
difficult to prove thal for almost all sequences

(T

f(ny=[14o0(1)] ) log n (1)

holds for all n, neglecling a sequence of n-s having densily 0.
On the other hand the probability that (7) holds for all but
a finile number of n is 0. In fact T do not know whether
there exists a sequence satisfving (7) for all n, i.e. if lhere

. j ", § g
exisls a sequence with T tending to o limit 0.

log n -
Let on the other hand g(k) be an increasing funclion

() :
%E(';T)_ —>1 as k—>o0. Consider the space of all
sequences where the probability of n occurring in our se-
g(n) f_lngn)*’
e

n=

f(ny=[1-4o0(1)] %:—g(n.)z-log n,

holds for all but finitlely many n. The proof follows by stan-

dard arguments of probability theory and will be omitted.
Consider again the space of all sequences of infegers.

Assume that the probability of n occurring in our sequence

satisfying

quence equals . Then for almost all sequences
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“log n

equals ¢ (--

1
= ):c' where ¢ is a sufficiently large constant.

Denole by\j,_.-:‘n} the number of solulions of
=, =, — ... + iy »
Then for almost all sequences
clogn<_f.ini<Zc,logn, e =clc), c.=c,(c) (8)

holds for all but finitely many n. The proof of (8) is similar
but more complicated Than that of (6) and will be omilted.

At presenl T can nol decide the question whether a se-
quence «, < ¢, < ... exisls wilh f.(n) >0 for all n >n, and
fen:'logn—=0 as n—= ~. In fact I can decide this for no

k>2.

3. Sidon called a sequence a,< 0,< ... a B, sequence
if 1he sums a; ——«a, ave all different. Turdn and I (*) proved that

i s i
for every B, sequence lim sup - =% bul that there exists

B. sequences with lim inf %"— <_ oo, It is not difficult to

construet a B, sequence for which a, < ¢k® holds for all k, and
it seems likely that for every & there exists a B, sequence for
which o, < ck*: holds for every . Unfortunately probability
theory does nol seem to help wilh this problem. The besi
result T can oblain is that there exists a sequence satisfying
a, < K2+ for which f(n) is bounded.

&, Let a, < a, be any infinite sequence of integers.
Straus and I comeclmed that there nlwiays exists a sequence
b, < b,< ... of densily 0, so that every sufficiently large
inleger is of the lorm ¢+ b;. Lorentz (") proved this con-
jecture. In fact he showed that there exists such a sequence
which salisfies for every x

log A (k)

=
N )

B(r)<e¢

k=]

where A(x) and B(r) denoles the number of a-s, respectively
b-s not exceeding r. Lorentz remarked that if the a-s are the
primes then B(x) can be chosen to be < c¢(logz)®. He asked
me if this can be improved. 1 (") showed by using com-

(") Proc. Amer. Math. Sec., 5 (1954), 838-841.
(%) Ibid., 5 (1954), B47-853.
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binatorial and probabilistic arguments that the sequence
b, < b,< ... can be chosen so lhal Bir)<"c(loga)® Without
changing the idea of the original proof we can make the
connections with probability theory clearer. Let ¢ be a suf-
ficiently large constant, and consider the space of all sequences
of inlegers where the probabilily of n oceurring in our
log n

A simple probabilistic argument
n

sequence equals ¢

shows that
B(x)=[1-0(1)] 2¢,{log x)*

for almost all sequences. Denote by E, the event that n is
not of the form p~-b. Then it can be proved by melhods
similar to those u%ed in my paper (*) that

]
P(E) < —5 1)

Thus from (10) and the Borel-Cantelli lemama it follows thal
for almost all sequences every sufficienlly large integer is of
the form p--b, which completes the proof of our assertion.
At present I can not decide if there exists a sequence
b, < b,< ... satisfying B(#)/(log #)*—= 0 and such that every
sufficiently large integer is of the form p—-0. Tt is of course
obvious from the prime number theorem that such o sequence
must satisfy
10,_ r

>1

limint B(x)
Bul perhaps even the proof of
lim sup B(t] > 1

is nol entirely trivial, at least T have not been able to prove it.

Several analogous problems can be slated. T only want
lo mention two of them, Lel b,< b,< ... be an infinite
sequence of inlegers, so thal every integer is of the form
b—I*. Denote by B{x) the number b-s not exceeding ». It
is easy lo see that

lim sup B(;ﬂ

>1

B(r) . .
A simple example shows [hal lim sup — - can be finite. To
X
see lhis consider the integers

2
LT 42%, k=1,2,...
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It is easy to see thal in this case every integer is of the form

B
b-+k* and that lim sup (f) is finile. 1 can not determine
r2
Bz
the smallest possible value of limsup (:) . Clearly
2
B(x)

B(x)> x* holds, but I can not prove that lim inf T =
x

Another question would be to estimate the smallest possible
value of 7 for which there exists a sequence

B <L, B

so thal every inleger n < = is of the form b.' 1+ Fk*. Clearly
t >t

Let b, <Zb,<C... be an infinile sequence of integers with
the properly thal every inleger is of the form 2*—b. Clearly
log 2 ;
B(z)> -rl(t::\_ but here I can not even prove that there exists
& x
a sequence with

lim inf B (.r) “’% <y

5. Let a,<a,< ... be any sequence of integers, We
define the asvmplolic density d, of the sequence as lim inf

Az - . .
D) , and its Schnirelmann density d, as the grealest lower
x :

A (2)

bound of Thus the asvmptolic density of the integers

> 2 is 1 and its Schnirelmann density is 0. The sum A B
of the two sequences @, < a,<_ ... and b, < b, < ... is defined
as lhe sequence consisting of the integers {a,}, {b}, {a,— b;}.
The well-known o & theorem of Mann (") stales thal if A
and B have Schnirelmann densities « respectively £, then

d,(A+B)>min(l, «4-3) . (11)

A sequence A is called by Khinlchin an essential com-
ponent if for every sequence B with d,(B) >0, d,(A-}-B)
>d,(B). By (11) every sequence of positive density is an
essential component. (This can of course be proved without
using (11).) Khintchin (') proved that the squares are an
essential component, thus giving an example of a sequence of
density 0 which is an essential component. The sequence B

(*) Annals of Math., 43 (1942), 523-527.
(1) Math. Sbornik, 40 (1933).
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is called o basis of order k| if every integer is the sum of &k or
fewer b-s. Let d,(A)== then I (") proved thal

z (]l —a .
d,\A—lLB)}m—{—(—Ek—). (12)
Thus every base is an essential component. Several authors
improved (12) in various ways ('*). I conjectured that

aL(A+B >t 2T (13)

The proof of (12) is based on the following lemma: If A is a
sequence of density a, then for every n there exists an integer
k, so that the number of distinct integers N, (A, A -+ £k,) not
exceeding n of the sequences A, A-}F, satisfies

N (A A > (a2 (14)
(13) would follow if instead of (14) one could prove
N.(A, A4k) > [ae+ta(l—a)]n. (15)

It is nol difficult to show that (15} if lrue is cerlainly best
possible i.e. N, (A, A+Fk,)>[a+2(l—a)t-¢]n is false for
all 2z and n>n,(z, ¢). In fact it follows by a simple prob-
ability argument that (15) is best possible for almost all
sequences of density x

A somewhat similar question is (he following one: Let
a,, s, ..., ay, be 2n integers in the interval (1, 4n) and let
by, by, ..., by, be the other 2 n integers of the same interval.
Does there exist an inleger x so that the number of solulions
of a;-Fax=0b; is at least n? If the a-s are the integers
n-+1 n+42, ..., 3n we see immediately that the value n, if
true is certainly best possible. Tt is quite easy to see that there
exists an r so that the number of solutions of o, x=b, is at

H - ; ;
least - - [To see this we observe thal the number of solutions

of q,-=y=>b, is 4n* and that there are 8 n possible choices
of v fiie. —4n<v<4n, yz£0). Thus for some v, there

n . . i ;
are at leasl - b-s in @ ~-¥;, as slated. Scherk improved

n : :
o to n(2—]2) . but up to now the conjecture on n is

neilher pmvec_l nor disproved ().

(") Acta arithm., 1 (1936), 197-200. ‘

(**) For the litterature see the paper of S16mr, ibid. (*), further a
recent paper by Kascu, Math. Zeilschrift, 62 (1955), 368-387.

("*} This question is staled by P. Erpis, Riveon Lemalematilka, 9
(1955}, 48.
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Linnik (") was the first (o give an example of an essential
component which is not a basis, Linnik’s proof ot this fact
was rather complicaled. Recenlly S$téhr and Wirzing (**)
gave a very simple proof of this result, in fact their sequence
B has the property that it is not a basis but that if d,(A)™>0
then d,((A--B)=1. Linnik’s example has the property that
N, (B)<Tne for every = >0 of n >n,(z). This led me to the
following conjecture: Let n, < n,<C... be an infinile sequence
of integers salisfying —”:_;"- e >1, then our sequence can

I
not be an essenlial component. I was so far unable to prove
this conjecture. Denote by p(k) the smallest value of r
for which h==a,n, *+~n_ ...~ n,. It seems likely that lo
every ¢, ¢ and & > a,{«, &) there exists an r=r{(a, &, ) so that
the set of integers Ik < @ for which p{k)<r have Schnirel-
mann density between «—e and =z, and the Schnirelmann
density of the integers k' <<z for which p(k)<<r--1 is be-
tween z and a——-z. This if {rue would prove our conjecture.
(The Schnirelmann density of a finite sequence a, < a, < ...

<@, << r is defined as )
p M{A\J)
min — .

1=k=x i
It would also he of interest to decide whether 1here exists
a sequence b, <b,< ... which is not a basis and which has
the following property: If a,<a,<T... is a sequence of density
o, then lo every n there exists a b,=b;(n) so that

No(A, Ad-b) 3> nlatf(a)]
where f(z) >0 for 0 <"a <1,

6. Some time ago Moser and I raised the following prob-
lem: What is the maximum number of integers a, < a, < ...
< @, < « so that all the 2"—1 sums

a, G, o +tt: , 1<r< k, the a-sall dislinel (16)
Il 3| T, = =

are all different. In paclicular is it possible to give k-2
such a-s not exceeding 2°. (1, 2, ..., 2" shows that it is possible
to give k41 such integers.) Denote by g(z) the maximum
value of K, thus g(2")> k- 1. All the sums (16) are less
than kz. Thus

L g(a)
or
log log x

log x
x —_— l4+o(l (17
9@ < Togz T +o] T3 b
(**y Mat. Sbornik, N. S. 10 (1942}, 67-68.
(**) Will appear in the Journal reine und angew. Malh.
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Denote by s,, s;, ..., s2o7_yall the sums (16) (s, is the
empty sum and is 0). Moser and I observed that by putting
&(x)

a,=— A, we obtain

i=1
2,111?}__] \ i g(x]
Z (s,-_ ;T) = Qeter-s E af < Wtytg () .
le=0 i=1

Thus the number of i-s for which

! \

| $— :\<~.-"9{-":)%

| 2

is grealer than 277" Thus since all the sums (16) are dif-
ferent we have

ey ¢ ; &
QU1 2 py (a3h,

or
log x .- loglog x o
1< gz TR ToM T, (8
which improves (17). Al present we can nol decide whether
log
g(2)= Iﬁ‘,+0<1,

is lrue or not.
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