ON A HIGH-INDICES THEOREM IN BOREL SUMMABILITY
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Let > a, be an infinite series. Put aj— ( )m tb«
[ —] ‘ ||

Lo s}
converges, it is defined as the Euler sum of lm,.. It is easy to see that if
L=u
et

\ '@, converges, so does > aj, i.e. Euler summability is regular. Euler summa-
). i J'"i'

bility was first investigated systematically by Knopp.' MEYER-KONIG ® proved
the following high-indices theorem for Euler summability : Assume that a;, —
except if

n;.
(1) k= n; where —'f;-—l- =¢s 1.

J

Then if > a. is Euler summable, it is convergent. MEVER-KONIG further con-

=0

jectured that the theorem remains true if (1) is replaced by the much weaker

condition n;.,—n;>cn® where ¢ >0 is any constant. It is not hard to see
that MEYER-KONIG's conjecture if true is certainly best possible.
I succeeded in proving the following somewhat weaker theorem:" Let

]
> a, be Euler summable, further a, — 0 except if k= n; where nj—n; >~ Cn;”
Le=A)
Q

where C is a sufficiently large constant. Then > a, is convergent.

Tt

The main point in these theorems is that no restriction is placed on
the speed with which a; tends to infinity. As far as [ know no analogous

I K. Knoer, Uber das Eulersche Summierungsverfahren. I, Math. Zeitschr., 15 (1922),
pp. 226—253; 11, 18 (1923), pp. 125—156.

? W. Mever-Kinig, Die Umkehrung des Euler—Knoppschen und des Borelschen
Limitierungsverfahrens auf Grund einer Liickenbedingung, Math. Zeitschr., 49 (1943—44),
pp. 151—160.

3 P. Ernds, Acad. Serbe Sci. Publ. Inst. Math., 4 (1952), pp. 51—56. Recently Mever-
Konig proved his conjecture: W. Mever-Kionie, Bemerkung zu einem Liickenumkehrsatz
von H. R. Pitt, Math. Zeitschr., 57 (1952—53), pp. 351—352.
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theorem is known for Borel summability. High-indices theorems have, in
fact, been proved for Borel summability, e. g. Theorem of PirrT' which will
be used later in this paper, but as far as I know the growth of the a-s was
always restricted.

The series > a, is said to be Borel summable to the sum s if

{-
i

]

@ (5
; N X \
lime s, =5, Si— 2 a.
¥ 0 k=) k i1l

In this paper | prove the following

THEOREM. Let za,.. be Borel summable. Assume that a.—0 except if

k=0
k= n; where

(2) M —n; > ¢ n*

(c, >0 is any constant). Further let be

x 1

3) > — Zoo,

=1 s —n;

I

Then >

k==l
Throughout this paper ¢, ¢, ... will denote positive absolute constants.
The proof of our Theorem will be fairly complicated. It could be
somewhat simplified if we would replace (2) by the following condition :
nj—n;>Cn!® where C is a sufficiently large constant. The somewhat
large extra trouble in proving our Theorem might be justified by the possi-
bility that our Theorem is best possible in the following sense: Let
n, m,... be a sequence of integers which does not satisfy both (2) and

ai is convergent,
]

X

(3). Then there exists a divergent series > ai, a.—0 except if k—n;, and
=y

el
> a; is Borel summable.
k=1

If n,<n,...does not satisfy (2),it is easy to construct such a series.
Thus only the necessity of (3) is in doubt. In fact, it is quite possible that
analogously to the MEYER-KONIG conjecture condition (3) is entirely super-
fluous. At present I am unable to decide these questions.

1 H. R. Pirr, General Tauberian theorems, Proc. London Math. Sec., Ser. 11, 44 (1938),
pp. 243—288, Theorem 17.
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One final remark: We might modify the definition of Borel summability

as follows: > a, is summable B’ if
K==}

=l r!-‘
lim et > s, :
t-=@ =) k.

exists as f runs through the integers. It is not hard to show that if n, <n,, ...

=]
is any sequence of integers, there exists a divergent series D'a, which is

Jo—11
summable B’ despite the fact that a,=0 except if k= n;. Thus no high-

indices theorem holds for B’ summability unless we restrict the speed with
JI-

which s,— ~ (over and beyond the trivial restriction &-%—ro for every ).

LEmmA 1. Lef
s =0(1) (n— ),

w
further a,=0 for k==n; (j=1,2,...), mu—n>en>. Then if X ax is

=
Borel summable, then it is also convergent.

This is a result of PrTT.*
For the rest of this paper we can assume that for infinitely many n
the inequality
[$a] > K"

holds, where K is an arbitrary constant; henceforth we shall assume that for
infinitely many n
4) |8.| > 100",

Let us denote by f(x) the index of the maximal term of the series

m L

T .
e _\_ Sk gy if there are several such terms, f(x) has the smallest possible value.
k=1 4

LEMMA 2. f(x) is a non-decreasing function of x.

This obviously follows from the following statement: Let y > x, k. > k.
Assume that

®) s L
then

. y!.‘._; . yf.',
(6) g o

1*
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This is an immediate consequence of the identities

A R R )

Fia
]

and of &k, > 1.
Let

n, N, .
be an infinite sequence of positive integers which satisfy (4) and for which
() ($u; | > (8| for m<n.

Then we have
"LEMMA 3.

fln) = n,.
Lemma 3 follows from (7).

LEmMA 4. We have for n, = x = 2n,

F(x) > 30"

¢ {* Sk X
oo B

Proor. We obtain from (4) by application of Stirling’s formula

where F(x) denotes the maximal term of the series e

X A By ﬂr’ A i
Flxy=e*——|s | > ——100" =
W)= fig n;! "
=™ 100% = [@i L
| 27en;, e | 2:n,
q. e. d.
We are going to prove that
: : |~ S

(8) lim max e " D x| = oc.

—
l-» m a-‘,-{: :_"--'_'raf-‘l k=l !\! |

Clearly, (8) implies that ::u;.. cannot be Borel summable. Thus (8) implies
k=0

our Theorem. Thus it will be sufficient to prove (8).

Before proving (8) we simplify our notation.

Denote m, = n;,, m, < m,< --- <m, the n-s in the interval (n;, 2n;)
(i. e. the m-s are the n~s in (n,, 2n;,) for which a, does not have to be 0).
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It follows from the Lemmas 2 and 3 that for x>m, f(x)=m,. Now we
distinguish two cases. In the first case for arbitrarily large K there exist
infinitely many j-s for which either

9) f(x)=[x] (m=y=x=y+Ky'"?=m)
or
(10) J(x)=N (m;=y=x=y+Ky*2=m);

it is easy to see that either N=—m; or N=—m;,—1. N=m:.,;—1 holds for
N =y, N=m;for N=y+ Ky'”. We may assume that y is an integer. The
second case holds when for every number of the interval (m,, 2m,)neither (9)
nor (10) holds. We make use of (3) only in the second case.

Let us treat the first case. First we assume that (9) holds. We put

T—y4 |§y1‘~‘], L—y-|Ky'"*] and show that

o
' Sk
(11) e? l Vil T. —~ for m— ~.
We have
Sup UL S _v.v.y

2 L + 34+ 2 = -2+ 2
the) ™ k! = =P T s
We estimate >, from below. We have from S == Supl =+ * = Suy,y -1

" _r~|'1 & r k
— J i ! g

> il 19
| S ! 2}’ = | Sy | yl

We have by Stirling’s formula

35| |Ky|

P (=)

further

A yt} M K
Pl ( _I) —(1+o(1y)e"*E,

Hence

\‘ k’ _.-‘ "T
o] > 18] —— Lo(l e i
bt "y 2[2:r (1)

!=!=|".
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i.e.
K?
- g
(13) :z: = | Sw; € y .
Next we estimate > and >, from above.

311 o \ﬂ I T,I'I._ *1 -SJ J’J ‘ T .

N I it !
& k! = k!

Since by (9)

ML o Y
k! J?‘ j" | S J‘!.
we have
I\ "y r -_:___- “l. -
= %! y"J'] (15 o)
¢ oo it )
"y ! ‘ I T—y_ il yl ' ] T*_J
K i Kt
thus again, by applying Stirling’s formula, l ,'—(1+D(1))e-' T ol
T Jr'“[tlus is a consequence of 7 —yp-L —y"“']|
T—y K 5
K
(14) 3= % s S
and by the same method we obfain
gl
(15) |::| = ';:F:S,ujil'-r .

From (13), (14) and (15) we obtain for sufficiently large but fixed K

T \ ?J. k . 5 1 |
(16) P T 2k | Sl
thus because of Lemma 4 our Theorem is proved if (9) holds.

Next assume that (10) holds. Then either

(17) N=mj—I
or
(18) N=ma

where N is the number defined in (10); i.e. either N=m, or N—m;.;—1.
First we assume that (17) holds, i.e. we have

(lg) f(.\f) m.—.;—l (m‘, = P 2 - J-__ KJ,I 2 - fﬂ I)
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where i+ 1= j We put again T;y—l_—[‘;{— y'f]. L—=y+[Ky'"? and show
(11). We have '

1 “'a'-—!_[

hy o 2 = iz
Pup_ S+3+ 3 =Z+Z4+5
k=

=t n k! e h=m;q e
First we estimate >, from below. We have
Wi 1
g _| 1‘1 i‘h‘ \
e | .f%n k! TI | 4"
— |$miq—1 Tn S f( A M — (m 1_])(”1‘ '_2) _) >
(M —1)! | T " '
|Snis1-3 L l § g TS m; 1 ik l M —1—¢ m.'!_‘-—;__ ]II‘ g I =
(m,-.—l)‘ ? T ' ' T
_—— ISJT’_I I i T‘“i'-—l l(- l— l "”;_I _Cl n—z}__ll)il m;jl gt T _| )
(m;,—1)! \ T ) T— ;004 ¢ My
Since (by m.y =m; < T)
1/3 12
- fia ey r vy WL
Mo Gk e T (i
( T ; h \1 m'; i
further for K > 4¢,
T " 1 7

we have
X 7
Pz iv1-1 YT, (o ER L
(20) | N 2' = f-_a e —l"__: ] L T m;. »

where ¢, is a constant depending only on ¢, defined in (2).
We now estimate \‘1 and .. We have by (7)

. my
| 21

| w 1 | " il
'SI T“"—‘ —MI T Y gl B s

(21) - 1 T.ﬂ.‘ 2.1 wpp-1 Tf.‘
l = [sw| X gr + 2 18wl 2 7
=) 1 k=mi}
further
5 S o (YW " oy SN OO BRSO
= k! (mp—1)! ' T ' b —0D! T—myy

Now since f(y) —m;-y—1, we have (for formal reasons we will replace



272 P. ERDOS

Sm}- hy st-_| ])

"T"”i.l'l rli'- 1-1 Mgyl
S S )
(my . ]). (mu )

= ﬁ)iy il 1‘ T Y+ 1_ .s..,.._l 1l Tt .‘ yl +1 ..-H-

(mia—1)! T
Hence
e, il - _hL ‘F'l____T: | ",+|-]-|_. Wil 1 \‘ y =My T
~1| — ml! T T—!nl (ml_l—l)' T ‘ ) T—mhl -
Sm 1;2q-1 Tnu -1 ‘ y '“l S | T I \ ‘l'm il M _7:—_ r
) (m l_l)l T_m' N =\ T T—mq \
or
’ 5 ] == ISHJ; 1 li Mgl ; ( PN L TN
(22) =1 = =) T T—m.,, )

il 3 LTS L BN |
We show that the factor l l ;L,) is arbitrarily small if K of (10) is
=1\ I )

sufficiently large. We have
\!,‘ yJ"'-n My y ]'”irl i T 1( ]"' M4 |
T-] — .

since m; and m; lie in the interval (m.,2m,) and by (2) m—m > ¢ m”,
we obtain

mi—my = (f—'(i I)) yl -

Hence
\ y | g . < (1} o Nk 2
=T r=y l—e"3
Further we have
y LA R F -»"m _ ) ‘_; u'e
A <ol T 2t
which is arbitrarily small if K is large enough. Hence
#1741
) [Tl e

if K is sufficiently large. We obtam from (20), (22) and (23)

(24) | >

|_|| "'10
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for sufficiently large K. Next we estimate D' from above.

. | @ o o L -1 T.ﬂ'
A | N S k| = 5 Cy
— \! e | » 1 — N |su|'l > 5 ==
o k! R -k
=i —i4-1 Ie—ng
- i 1 i = I w1 mal
A ") PR = § P
- 'S‘"F | T | Sm;| T 1Sy 2 e
— k' R ! JF a— k'
=i+l k=g 4 h=m 5 k=T :

:D‘ i 2 e Tlr \“t \ t \ﬂnr \*rru
= |5 _\_ e e s T ¢

=y K=y

N 4\-', _!S_vifi-l_L Mifpp-1 m, : (m; .-—i)(mu.—Q) ] -
i~ b h
E {1 o ——— T o {.’. | Singyi-1] LU 1( ]u.,..; 1”_ T -
— .1_|(mn1-—-1)' T—m } .T|(mr_;—l)' L T—imig -

|Su.“] 1 migg -1 T \1 l'TJ'wri i T_—m.--:

i (m.+1—~])' T—mi =T\ L T—myy '
i 8

N | Sigyq-1] . ‘ S o ]
(25) — = (_m - T — M i L) T—mia

It is easy to see that

- PR Tl
(26) - ( ] Tty "

it K is sufficiently large. Hence for sufficiently large K

all 1 =y
27 2 < yp ]2l
We have
; J“{-‘—]_l !‘ :01 I sni .
SN g O IR " A SUTR P
—_— e = k' =mom! m; 1 )
= 151 m;‘ m--1—=T 15754 m:' Aa, Iﬂr—f—l-—-—
- il'i _L T”I"] 1 \1 -E]uq m,+|'l_ nh’_"!—_‘_
= (M1 —1)! :—,-; L m+1—T
S I ‘T)r!'f-m;.l-l@-i__])(?‘—nl_ﬁ
(m, g —1)1 T—mia <7 T(m+1—T)
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[t is again easy to see that for sufficiently large K

Yt (4 1) (T— i)
(28) ] = Ty
and hence
X Teter ! S B
(29) 2 = _lb | 2
It remains to estimate . and > . We have
T-1 e | g
N ST sel ey, T—1,
_:s|"|smIf J_",'_! "lfr!—j ll‘; ‘_T_—_? S e
IS 1 1 ‘“J'—!'l T.T N
(m, :—I)' L ‘ —] (T—m)) —
LI (e m)
(i —1)! T—~m+; T
Since for sufficiently large K
I]” T=ma) (o)
T =
we have for sufficiently large K
e A
(30) — ]0 — |
and similarly
W 3
e G NV
(3]) — = 10 2 | *
It follows from (20), (24), (27), (29), (30) and (31)
SHI 1 e F
s atl g T
(32) €| lff'T (m 1)1 4 T—mi

Hence, by Lemma 4, (11) follows. If, instead of (17), (18) holds, (11)
can be proved similarly and we omit the details. Thus our Theorem is proved
in the first case.

Let us now treat the second case. First it is obvious that the number
of the my-s in (m,,2m,)iso(m;”). This is an immediate consequence of (3).
Hence it follows that the sum of the length of the intervals (m;, m;.) in
(m,, 2m,) with m;,—m; < Km; " is o(m,).

We now split the numbers x in (m,, 2m,) into three classes. In the first
class are the numbers x with f(x) = [x], in the second the x with f(x)<x,
in the third the x with f(x) > x.
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First we show that the sum of the length of the intervals of the first
class is o(m,). lt clearly suffices to consider the intervals (m;, m;. ,) satisfying
Mjy—m; > Km, . Now we observe that the numbers x (m; = x = m;,,) for
which f(x)—[x] form a single interval; (this is clear since f(x) is monotonic
and if f(x)==[x] then either f(x)= =1 or J(x)=m;.1—1). Now since the
number of mj-s in (m,, 2m,) is o(m;”) and we are in the second case, the
result follows. Observing that by (7) f(m,) = m,, we see by similar arguments
that the sum of the intervals of the second class is also o(m,). Thus it
follows that the sum of the length of the intervals in the third class is greater
than (1—&)m,.

If f(x)>[x], we have f(x)=n; (>m,) for some j. Let us -denote by
(¢;, 8, the interval for which f(x)=—n; (¢, = x = ;). We have (as the length
of the intervals in the third class is greater than (1—e&)m,)

(33) 3,{ @) >(1—em,

my=a;

= =2,

(¢ >0 but arbitrarily small). As (10) does not hold, we have

(34) N (—g)=o(m),
Wiy ".-'I 4wy

hence

(35) ‘ > (B—e)>(—e)m,.
g -4y

g

We may assume without loss of generality that between &* and (k1)
there lies at least one n;; we can assure this by introducing Dbesides the
old n-s new ones. The enlarged sequence obviously satisfies (2) and (3).

Next we prove

LEMMA 5." Denote by (e;, 3) the interval for which
fX)=n (=x=p) (n,>4m).
Let K be an arbitrarily large constant. Then for sufficiently large m, there
exist a j for which
3

K|t
— > 1+ max - - —.
; ta i) |ﬂ, f‘—ﬂ

Clearly, Lemma 5 got considerably strengthened by the assumption that
between &' and (k- 1)" there lies at least one n;.

5 A similar lemma is used in a paper by Macivrtyre and myself, Edinburgh Math.
Proc., Ser. 2, 10 (1954).
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PrROOF. Assume Lemma 5 is false. Then we have for every j

12
|
(4 —e;) < Ke, max .
|n; ,—n“
It follows from «; < 2m, that
1/s

4 <y [
36 N (B—ea) < 2Km, > max — :
( ) ”j'_'l"‘"'( ? J) : “,,f'1“| == |ﬂ,_f‘—'—'nJ|

we have by the inequality of the arithmetic and harmonic means for every
positive integer ¢

I a0 R S -
nipu—n; R Mt o —m
: (ﬂ:_-.,[—a’!f)
=
and for every negative integer f similarly
Ll T

—fpe PP ST s —

t; denotes the integer for which

i ™
max ———— — —————,
t=0 [ Ripe— M| |y, — ;|
Then we have for ¢, == —M (where M is an arbitrarily large but fixed integer)
13 @
N | =9 N2 W 1 _
— = A | = P ] | — .t
i 4y .”F P ”J =1 uJ--'-'uj__‘" "_;-] n;

H=-N

where n: denotes the smallest n; with n; = 4m, and

{2 o
3 o caSpmy_ 1
n g H,,r —”; i~ Sna—n
i -M

Therefore by (3) and (36)
> (B—a) < 2Kem,

—
i 4 niy

for an arbitrarily small «>0 if m, is sufficiently large. But this contradicts
g o 3

(35) if E< IR
Let j be a number satisfying Lemma 5. Put

Thus our Lemma 5 is proved.

B 1R =t
() 'H_,'-.f—ﬂ_,'l
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Then there exist three numbers y,, 7, y. with
Syn=T, ST=y,
for which
) =HT)=f(@)=n;.

We prove (11) in this case, too. We put again

S, 0 W 8
_m?‘ =t X i F =T b Zet 2,
= 1 }::n“ ":";Ul
First we estimate >, from below. Clearly
N g
(37) | 25| | =

AN !
oo

We now estimate and l';t from above. We have

- \1 |5; T;I. - \‘ Su; TJ"' T i _“' "
(38) \ = ey k! o ml * n+1" )7
( e \’ q"r iy _ﬂi” e \m‘ hd "
: iy = | H: m—T = m!
since my >4m,, T =2m,.
Further, by the definition of n;,
S,;l, T“-’ - "-u.] w( T Hy - .S“,' s ( T Hy | ( T Wy
e ke =) -
Hence from (38)
| @ NI T
- ..Slr-l . —— T =
W, ety T N
(39) DART RS D EN

We have for sufficiently large m,

T i T :. { K(f j) Ly .J'I,fl' ol - h’l‘f ..h|.: i
( ' = n— 1y ' =g '
Hence by (2)
% g o 2 Qw g K(l-5)
=l Py

which is arbitrarily small if K is sufficiently large. Hence from (39) we

i Thi ™ ] ~3 ] I 3‘2 i _i " l a
Ilus_t,an be proved as follows: We have for n }9102') (1 L | > 5 € (namely,
n log l 14 E) > Xx— ;_;1 = x —log 2). Now we have by (2) and (3) {—j—o(n,—n;). Putting

x—K(I—N" n- m—n;, the result follows,
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have for sufficiently large K
Sl iy
(40) 2l =712
Finally, we eshmate . Let us define the number 4 by
m=T<mu.

Then we write

"3 ! Hail 1 :Dw Y Yrpe
oA g, g, JEE S 8Y
=0 K=n;, =yl
We have
i-i |.S. 1 |
\”!_‘__\1 L_.‘__,-.—T”‘li[] E . O W
=S = (1) " ‘
41 2
0 _ ;£_|s_ui.. ATEANE AN
= (HH[—])' T'—nma+1

Now we have as before

Tt syl ()
St yT = ) T"‘T_) '
hence by (41)
: 'g Ao+
b \‘ h
(42) b HES = ) ..lTJ

We have for sufficiently large m, as in the estimation of _\_'“

‘] +K(_:;_fn_l): 2= (i) g Kij-1-1)' *,
=
|
T == |ﬂ;+p—'ﬂ|
(43) o i
( '1 K(J"—f_""” o I-; 2¢ KU -1)'e — 2 % fii-m" 2aghe1-1)"2)
ni— N ) N

Since between &' and (k1) there is at least one nm, we have
j-—).>n}"*—n;’_" and since n; >4m,, n, < 2m,, we have
G—0)" > (@m)' " —@m)"")"* — 2" @ —1)"* m"* =comi”,
hence by (42)

1 QY s |"' " h:a Sy i h‘ — (A=1-1
1 ¥ =4—LTme T \ -'l s

| —1 | — n}_! ﬁ )
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or since

N 1
L

v o - - . . -
and me * is arbitrarily small if m, is sufficiently large, we have

(44) |—I “‘*]2'_“

The estimation of " can be done similarly and we obtain for sufficiently
large K
\1,, B 1 i \-!

(45) |_u|‘--|—2'l_s-
Finally, we estimate .  from above. We have
e " b .} 2 L s” " s
=ia S frs $ Bmf L)
(46) R=hyay 1=A+1 \ !
. ’\_ﬁl ]s"!1 " "“ ‘1_ I

_r;'_-l m! H: k- I—T
Further, we obtain as before

£ ISWI o o Y™

taking into account that by the definition of y, and T

{JH‘_[' L max - K|t | ')1

1=0) Nie—n;|

we have
i =i g . 2 (rj=np) S,
WPy KU O mn
(48) [T‘ = < 2e ,
we have by (46)
> !S 5 i= <t
Ny sl 5 "y ',\ﬁ =K (j-1)2 nl’_|_"__"__
(49) DT 3 e i O
& xiph  mdl
Consider the sum > e ¥V H—l:—-ﬁ Let 2° denote the greatest number
T=A+1 1 T

for which m, —T7T = i.e = g— T = 3m,. Then write

3 ]

) S, A
— -)-u —

A1 A
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First we have

g | it N 1
W KL n's i 1 "’ .y T I WU Y !
e = toi e A Oy 2 0
;::] I 1""! ’f‘—:»|

hence because of n; >4m,, n,, = 3m, and because of the fact that between
kK and (k--1)° there lies at least one n we have as before

it

3 Kijf e 1y _ l = K eomiHe Q“ K Wi
50 D et = me ™ e 2" =l m,— ).
G0 = A i—1 ‘ — M (=)
Further we have
x

i-1 i-1 o ] i

e T 3 e <3 >e < 3|e adx=—,
P n+1—T ey 281 = K*

0
i. e. for arbitrarily small ¢« >0
i-1
N’ Kij-n's M "‘]
«h rﬁ,ie m+1—T
if K is sufficiently large.
We obtain from (46), (47), (49), (50) and (51) for sufficiently large K

T 1 7 .
(52) 12 < 12 =l
hence
|
| S8 b 1S 1S 5 SR
| =0 k! > —tl = =y |2l

hence, by Lemma 4, (11) follows and the proof of our Theorem is complete.

We can generalize Borel summability as follows: Let f(z)———:_‘:b;,-z"-' be
k=10

an entire funetion, b, real and f(z) — = for z— o along the positive axis.

o

The series > a, is said to be summable f to s, if
fe—=d}
:n &
im —— 2, Sebpz* =35, Se— > @
o J(2) i =0

It seems that the following high-indices theorem holds for this summability
method. 'lhere exists an increasing function g(x) depending only on f(z) so
that if \ a; is summable f and a, = 0 except if k- n; where n;., > g(n)).

J'u
=]

then 5! 2 @ converges.

Flndlly, I would like to thank Mg. P. Sz0sz who simplitied and improved
my original proofs in several aspects.
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