A LIMIT THEOREM FOR THE MAXIMUM OF NORMALIZED
SUMS OF INDEPENDENT RANDOM VARIABLES

By D. A. DaruiNg anxD P. Ernds
1. Introduction. The main purpose of this paper is to prove the following

theorem:

Taeorem 1. Let X, , X, , -+ be independent random variables with mean
0, variance 1, and a uniformly bounded third absolute moment. Put S, = X; +X,
+ - 4 X, and let

S O = g e
Then
. log log log n t
' < (2 loxlog )t g Jogloglogn &
e P"{L“ < @loglogn)” + 5500 e T & Tox Iog n)l“}

= exp (—e '/2m)}), —w<i<o.

The corresponding limit theorem for U, = max,<,<, Si/a’ is well known [3],
but the distribution of U, is considerably more delicate, mainly because, speaking
roughly, S,/k* attains its maximum for a relatively small index, and the usual
crude application of the central limit theorem will not work. Indeed, the above
theorem is probably false if we drop the condition on the third absolute moment,
even in the case of identically distributed X, .

Theorem 1 solves, in an asymptotic form, the classical optional stopping
problem {(for example see Robbins [7]). Robbins gave a one-sided inequality
for the distribution of U2’ = max,ncr<a S./k}, 0 < ¢ < 1, in the case of normally
distributed X, . In the case the X satisfy only the central limit theorem, Darling
and Siegert [2] found the limiting distribution of U}’ in terms of a Laplace
transform, namely they found an explicit expression for

f ¢ lim Pr { max %‘5 -y 5} do.
o o e—39pch<n K
The evaluation of the limiting distribution of U7, , given by (1.1}, is however a
qualitatively different matter.

This problem is also closely related to a problem posed by Levy [6] (footnote
19) on the law of the iterated logarithm for the Wiener proeess. Theorem 1
sheds some new light on the law of the iterated logarithm, and it may be true
that the requirement on the third absolute moment could be replaced by the
condition that the X, are such that the law of the iterated logarithm holds.
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144 D. A. DARLING AND P. ERDOS

2. The method of proof. The idea behind the proof is quite simple though its
execution is somewhat devious. We suppose first the X; are Gaussian, independ-
ent, with mean 0 and variance 1. We then show there is a sequence {#.} and a
stationary Gaussian stochastic process (the Uhlenbeck-Ornstein process) X(f)
such that the sequence {S;/k*}, &k = 1,2, - -+ , n, has the same joint distribution
as X (), k = 1,2, --- , n. Tt turns out, because certain machinery is available
for stochastic processes, that the limiting distribution of max,.... X(r) can be
computed asymptotically when { — «. And it is possible further to show that
this limiting distribution is the same as the limiting distribution of max;<i<.
X () when n — o, and so the same for U/, when n — «. Next an application
of the so-called invariance principle of Erdés-Kac will conclude the proof.

In Section 3 below, the first part of this program is carried out by proving
Theorem 1 in the special case of Gaussian random variables. In Section 4 the
invariance principle is applied. In Section 5 we conclude with a few additional
remarks, stated without proof.

3. Proof of Theorem 1 for Gaussian variables. TFor simplicity we have or-
ganized the exposition of this section in a series of 10 lemmas which culminate
in the proof of Theorem 1 for Gaussian variables.

Let X, , Xy, -+ be independent Gaussian random variables with means 0,
variance 1;put S, = X, + X, + --- + X, . Let X(1), 0 <! < o, be the
Uhlenbeck stochastic process, that is, X(¢) is Gaussian, stationary, Markoffian
with mean 0 and covariance E(X(s)X (f)) = exp (— [t — s|); X(0) has its station-
ary distribution. Let U, be as in (1.1).

We define
(3.1 L = % log k.
LeMma 3.1.  The sequences {Su/k, (X)), k= 1,2, --- , n, have the same

jotnt drstribution.

Proof. Both are Gaussian chains with mean 0 and

B 55) = PP - e (~ |3 10gg ~ 3 logh ) = BXGX(L).
We define
(3.2) N(a) = integer N such that X(1,) < «, k=12 --- ,N—1
X, N=1,2 .
That is, N(e) is the smallest positive integer such that X{{,) > «.
Lemma 32. Pr{U, < a} = Pr{N(a) > n}.

Progf. Obvious.
We define

(3.3) T(@) =sup {I | X(7) < «, 0< <},
(3.4) K(a) = integer K such that {4, < T{(a) < ik .
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These last two definitions make sense since the process X(f) is continuous with
probability one.
We define

(3.5) L{a) = lxay — trcar-1 +
Using (3.1) to (3.5) the following relationships are easily established:
86 Ke@=[FF""1+1=""4+8 0<s<1
1

L(O‘) = ’} IOg K(OE) IOg (K(CE) K( ) ) K(a) > 2:
(3.7 Lle) < e'“""”
(3.8) N(a) > K(a).

Denote by T.(a) a random variable defined the same as T'(«) in (3.3) but in
place of having X(0) with its stationary distribution we have X (0) =

Lemya 3.3.

Efexp [—¢T.(@)]} =

ERFE ]
D_i(— e .

D_(~a)e™’ "7
where D,(z) 1s the Weber function, of. Whittaker and Watson [8; 347].
Proof. This is given in Darling-Siegert [2].
We define

£20,

¥
(3.9) way = EL gorn,

Lemma 34. lim,.. Pr{T(a) > pla)y] = ¢, 0 < y < o, where T(a),
wla) are given 1n (3.3), (3.9).
Proof. Let
D_tjucar(— )™ { |: F(Of)]}
o« e = E X
0 = Do L

Now D,(t) = ¢ */* and since p(a) — ©, @ — « the numerator in ¢,(£) ap-
proaches 1 when @« — = for any z. We use the asymptotic expansion of
D_.(— a)e" " fora— »,0 < s < M given in [8; 348] as follows:

- adf4 —sr; - (zﬂg u /2 e—~1
D_,(—a)e ~ A+ P() o' B
e TR 1) - (=s+ D(=s +2)
A=1 507 + ' B=1+ 2% +

and since 1/T(s) = s + 0(s*), s — 0, we get from (3.9)
T (%w“”ym”%;_ GLD
D_ypiar(—a)e =1+ = a o + 0 e

—1+e+o(0)
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Hence ¢, (§) — 1/(1 + £§), «a — « forallz. Since (1 + £~ is the Laplace trans-
form of e™¥ we obtain the lemma.

LemMma 3.5.

lim Pr {T(a) > “-—fl} =1,
Proof. Follows easily from Lemma 3.4.

Lemma 3.6. If e = e(a) approaches 0 sufficiently slowly, lim, .. Pr{N(a) <
Ko + €} = 1. It will suffice to take e = 1/a’.

Proof. We calculate the conditional probability p
p = Pr {N(a) > K@+ 9 | T@) > &:‘)}

Now T'(e) > ula)/a means by (3.7) that
i
o < o0 - 3]« e[~ 222 ]

o

and we denote the two right members by x(«). The event N(a) > K(a + ¢
implies that X () having reached the value o + ¢ has decreased to a value less
than o within a time interval less than x(e). Then, recalling the stationarity
of X(#),

p < Pr{X(x(e) <a|X(0) =a-+ €.

The conditional distribution of X (x(«)), given X(0) = a + ¢ is Gaussian with
mean and variance, respectively,

mla) = (o + ee ¥

o) = (1 — ¢™'™) < 2x(a).

Hence
8—5“;‘2
PS %
where
£ (a + e)e—X{a) 5 (a + e)e—Xm
ala) = (@)
B —C!(]. fa e-—x(a}) ee—x(a)
ST a@” T @7
2 = 5 X + g™ — g7 k@)

€
e A
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where «, is independent of ¢ ¢ < 1, say. Consequently, if e(a) is such that
¢/x}(a) — ® then p — 0. It is amply sufficient to have ¢ = 1/a° from the
above definition of x(a). Using Lemma 3.5 we thus obtain Pr{¥(e) > K(a + €)}
— 0, a — = for such an ¢, and Lemma 3.6 is proved.

Lemma 3.7. If € = e(a) approaches zero sufficiently rapidly. T(e + ¢ —
T(a) — 0 tn probability. It will suffice to take ¢ = 1/a’.

Proof. Tt is sufficient to prove E{exp[—s(T(a 4+ ¢) — T'(a))]} — 1, s > 0.
By the same formula used in Lemma 3.3 and the same expansion used in the
proof of Lemma 4,

D_(—a)e""
D_a( —_— — é)e[a+e}’f-l
(21_)]!'2

e A + T exp (a/2)a""'B

172
(21?(3) exp (@ + 9°/2](a + o' "B

Efexp [—s(T(a 4+ ¢ — T(@)]} =

= e%(a’—fc“)‘)

o~

e e+ o774 +

—nete?/2
=€

and hence if € = o(1/«) the last expression approaches 1, and the lemma is
proved.

Lemyva 3.8. log N(a) — 27 (e) — 0 in probabzlity.
Proof. Using (3.8) and Lemma 3.6 we have, for ¢ = 1/a°,
Pr {K(a) < N(a) S Kla + ¢} = 1l,a > o
and by (3.6)

Pr{l + ale—zT(a} < M < e—z(‘."{ad-sj—!"(a)} + 538-“1(“)}—’1, e T

= ATy, ==

where 0 < §; < 1,7 = 1, 2, and by Lemma 3.7
N(a)

e?ﬂ"(a)

-1

in probability. Hence log N(a) — 27 () — 0 in probability as asserted.
Lemya 3.9. lim.. Prilog N(a) > 2u{a)y} = ™.

Proof. 'This follows directly from Lemma 3.4 on using Lemma 3.8.

We are now ready to prove Theorem 1 for Gaussian random variables. Since
by Lemma 3.2 we want an expression for Pr{N(e) > n}, by Lemma 3.9 we need
to solve 2u(a)y = log m with respect to « for large n.
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Lemma 3.10. If 2u(e)y = logn, y > 0, then forn — =

= 3 log loglogn _log ((41)*3))
(3.10) o =3 log Jog.n)" ~+ 2(2 log log m)'* (2 log log n)"/*

1
+ O((log log n)“g)'

Proof. From (3.9) we have to solve
( i
2 ir) ea’fzy o ]Og‘n

asymptotically for n — « with respect to e, and this yields after some calculation
(3.10).

Now from Lemmas 3.2, 3.9 Pr{U, < a} = Pr{N(a) > n} = Pr{log N(a)
> log n} = Pr{log N(«) > 2u(a)y} — ¢ so that

. log log 1 log ((4m)" .
re{0. < 0 o o + S - )

and Theorem 1 follows by putting { = — log (4m)y).

4. Use of the invariance principle. In the preceding section we have proved
Theorem 1 in the special case of Gaussian variables. Now if in the case of
general X; satisfying the hypotheses of Theorem 1 we prove that the limiting
distribution of U, exists and is independent of the parent distribution of the
X, we have proved the theorem in the general case. This is the so-called in-
variance principle of Erdis-Kae [3).

In the following, €, , €, -+ - will denote positive numbers which can be chosen
independently and arbitrarily small, and ¢, , ¢, , - - - will be positive quantities.
depending on various parameters, but independent of the distribution of the
X, and of n.

We suppose that X, , X, , --- are independent, with mean 0, variance 1,
Bl Xy <6, Letb

Sn=X1+X2+"'+Xn1 Fn(x)=PrlSn/ﬂ'*Sz}1

B(x) = (2% f e dt,

We need the following two known theorems:
(a) the Berry-Esseen estimate [1], [4],

| Fu) — o(@) | < 355,

and-its multidimensional analogue; ¢, is independent of k, z and the distribution
of the X, ;
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(b) the “law of the iterated logarithm”; Feller [5],

_— S, owk
Pr {llm Gn log log ) 1} = 1

We define the function f,(y)

_ 3 log log log n ¥

and theevents 4, = A, (), k=1,2, -+, n,

(4.2) A, = A,..(3) = event that S,/k* > 1.(p)
and the function g,.(y)
(4.3) ga(y) = Pr{ }SJ Ak}.

Thus g.(y) = Pr{U, > y} where U, is given by (1.1) and we need to show that
lim g,(%) exists and is independent of the distributions of the X, .

Levmma 4.1, Given e, > 0 there exists a ¢; > 0 such that n > ¢, implies
Pr{Uks”o“;- Ak} < € fﬂ?' au y 2 0.

Proof. Given any ¢, there exists a ¢; such that n > ¢; implies Pr{UkS“ A}
< &/2 and there exists ¢, such that Pr{S, < 3(k loglogk)}, k > ¢s} > 1 — /2
by the law of the iterated logarithm, (b) above, for n > ¢; . Then

] - ;—‘g Pr {S:/k} < 3(log log K)!, (log n)* > k > ¢}

< Pr {S./k} < e;(log log log m)f, (log m)® > k > ¢4}
<Pr{ N Ay=1-Pf{ U 4}

ce<ks (lognl? co<k=(logn)?

Hence given ¢; > 0 choose ¢, such that PrilJ..ce<ctoxms Ai} <e /2 then ¢
such that n > ¢, implies Pr {\Uk<.. 4.} < /2 so that finally n > ¢, implies

Pr{ V) A,,}gpr{UA,,}+Pr{ U A,}<e.

E<{logn)?* k=<ca ca<k=ilogn}?
which proves the lemma.

Lemma 4.2. For k > (log n)®

Pr {4,) = -

= 1 1
24/7 log n log logn( + o)

where o(1) — 0 uniformly in y and n > k > (log n)®, n — o,
Proof. Since Pr {A,} = 1 — F.(f.(y)) the Berry-Esseen estimate, (a) gives

| Pr(4s) — (1 — (@) | < 377
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and from the elementary formula

1 — &@u) = e+ o(1), u—e

1
(21-) l.:“Z_u
we obtain on using (4.1)

1 — &(f.(y) =

=¥

e
2(m)'"* logn log log n e ol

so that for & > (log n)® we obtain the lemma.

Let £ > 0 be given. We define an integer N = N,(¢) and a sequence of
integers n; = n; .(¢) as follows
@8 N = N = [b_gﬁal_ggﬂﬁ]

(4.5) n; =n,; (8 = [exp (j ngom):l, =l s N

Levmva 4.3, Given e, > 0 there exist ¢s , €4 > 0 such that n > ¢q, £ < ¢y tmply

Pr{u.qk_ UA,,,.}<EQ.

kZn T<N
Proof: Let
z= U 4.- U 4,
(lognli<ksn (logn)*<nj<n
H =A, N 4.
{logn)?<r<y
Then
Pz)= 3 PZ|H)P)
< max P(Z|H)< max P4;. | A.).
(lognli<psn (logn)?<njsn
Now

Plucol + 8) | Auye) = g b = o0 o,

where A, — 0 uniformly in j, y, § (but not £) from Lemma 4.2. Tt follows then
that
P(Z) < max  PAL..0) | Ay + ) +1—e" +h.

(logn)®<n;<n

Now given e, > 0 choose 6 so that 1 — ¢™° = ¢/3. We have clearly
P(AL @) | Auiy + 8) < P(Sair, — 8u; < () falt) — )iy + )
and from (4.1) and (4.5) it follows that, for any £ > 0,

1/2 i N
(ni-”) f"(ﬁ')+1 —(n?;))l/{“(y + 5) B 55“‘2 - ?ﬁi + k“ !
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where k, — 0 uniformly in 7, 8. We notice that S,,,, — S,, has mean 0 and
variance n;.; — n; , and that for any random variable ¥ with mean 0 and
variance 1, and any W > 0,

1

P(YS _J'f)sl_f_i}lf?'

Choose then M > 0 such that

1 €

14+ M 37
then ¢, , €10 such that £ < ¢, n > e, imply

€7 - g+ b < —M
for all n; > (log n)’. Finally choose cs (> ¢,) such that n > ¢, implies A,
< e/3 and the lemma is established.

LevmMa 4.4, Given ¢ > 0, £ > 0, there exist ¢,, and ¢, such that n > ¢, ,
a > e tmply Pr {\ULjco duyn 0 + @)} < &

Proof. Pr {U A, Wy + 0.)} < Pl‘{ U AWy + a)}

ni<n ni={logn)?®

=% > Pr{A,, .(y + o)}.

nzni>{logn)?

For any a > 0 the first term can be made less than /2 by making n > ¢;
(Lemma 4.1) and since

Pr {4, + 0} = 35y

by Lemma 4.2 and (4.4), the second term is less than ¢,, e7*/¢ for n > ¢,5. Thus
choose n > ¢, = max (€5 , €5} and ¢, such that ¢, €77/ < €/2 and the
lemma is proved.

Let us next define events B; foranya > 0, (> 0,7 =1,2, --- .

(46} Bi = An.‘.n(y) - Ani.w(y + G) if n; S n

= null event ifn; > n.

=(u+a)

(14 o(1), n; > (logn)?*

The preceding four lemmas assert that given e, > 0 there exist n, a sufficiently
large and £ > 0 sufficiently small so that

guly) — Pr{ U B,}' O o
i nj={legn}® |

LemMa 4.5. Given ¢ > 0, a > 0, £ > 0 there exist r, ¢, such that n > ¢y
implies

(n_?)?ﬁ = f.ly + a)} <&,

max > Pr {B,-+,

where r < v < (log log n)® and (log n)® < n; .
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Proof. Let
(4.7) b.() = Pr{BH. : S) = 1.y + a)}
Then
where

() *fa0) — (0)"*faly + @)
(n:'+v - nl')uz

Loy N1/2 . 1/2
_ )" = () .f..(y)—( n; ) -

(Mise — 1) " nis, —n;/ (2 log log n)

We consider n; > (log n)* and treat two cases separately.
1. r <v<loglogn. Now when» < log log n using (4.4) a simple estimate
shows

P, =

(ni+' L2 (’.“?.,-)”2 c”b_uz

M., —n)'"* = (log log n)'”*

n;’ 1/2 ¢
(n————m = ﬂ,-) < p—,l,% (log log m)'"*
and hence

1/2

1/2 Cap
Dy > Cgp T — ;173 > Cgv

for all j, ¢, independent of §, when ¢., < v < log log n, ¢,, independent of 5. Thus
b,(7) < e, Csn > v > log log n, € >0

where c..¢2; depend on £, y, @ but not on j, n. Consequently there exists an
r independent of j, n such that for any ¢; > 0

Y by <
r<e<log logmn
2. loglogn < » < (log log n)°. In this case we obtain

> (1 = (f—")w)f.‘(y) 5 cu(,:”' )m 2 Casfa(Y),

i+w i+

where ¢,; is independent of n, j, so that

b,(j) < €5 exp (—cor log logn) < ___Cga_c_
(log n)°**

and hence for n > ¢;5 , €20 independent of 7,

b,(5) <;_5: n > Cy .

log logn=v¢<{log logn)?
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Combining these two results the lemma, is proved.
Also, when (log log 2)* < » we have p, = f.(x)(1 + o(1)) and

e—ﬂ
b() < ) NE (1 + o(1))

and hence
N

Zx b.(j) < €an

ni={logn)?

where ¢, is independent of j.

An easy extension of this last result, using the multidimensional central
limit theorem, shows that the events B; are asymptotically mutually independent
if the indices are sufficiently separated. We have, namely, from the preceding
lemmas

PriB) =S+ o) and PriB.B, By = (%) + o)

if min | 7, — 4, | > (log log n)*. ¢;, depends on v, a, ¢ but not the distribution
of the X, nor on n. The function ¢(1) may depend on the distribution of the
X, and not approach zero uniformly in the parameters.

Now introduce events D, as follows, for any r > 1.

4.8) D.=BBl.Bl, B, k>r

D, =BBl., --- B} E<r.
Cleaﬂy Pr {UkSN Bk} = Pr {U;«‘SN D,} and also Pr {D,"D,-! B D“} =0
unless min, , | j. — 7, | > r; butin any case Pr {D,, --- D,,} < Pr{B;, --- B;.}.

Given ¢ > 0 there exist £ a, r, a2 such that

J g.(y) — Pl‘{ V) D,—}’ < & forn > ¢

nzni>(logn)?

and
Pl‘{ U D5}=ﬂ'1_02+€3_"‘
nzni>(logn)?

o= > Pr{D.D;, -+ Dyl
fi<fa< e <is
nznj > {logn)?

where

Now, as with the events B, , the D; are asymptotically independent if the
indices have a mutual separation at least (log log n)?, and ¢; = ¢s3 (1 + o(1))
where cs; depends on r, @, £ but is independent of the distribution of the X, .
It is well known that, in addition

I I Lt
nZNj ogn)?
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We now suppose k > 2 and write o, = o4 + ¢i’. The following estimates
result directly from the preceding lemmas:

or = 2 Pr{Dy.Dy, -+~ Dy
Fi<ia< ik
min|jia~iv|l<(log logn)?

nznj;>logn)?

< Z Pr {B;B;, -+~ By}
g iglrraliy
rEminlipg=isl <(log logni?
nzxnj;>{logn}?
N k—2
<( > mE)om( T ) ms( 5 00)
nzni>(logn)? i r<esilog logn)? i v=1

"o
gy = Z Pr {D,-‘D_f: L] D,‘,;
Ja<fgSerr<ik
minlig=iy|>(log logn)?
nEng > (logn)?

k
= 251+ o)

where ¢4 is independent of the distribution of the X, , and of n. It follows
that lim,_.. o, = 7, exists, but the =, may be unbounded funections of £, a, r.

The final argument proceeds as follows: choose e; > 0 arbitrary, then choose
¢ n, aso that | g.(%) — Pr {\UJisaiscomn D4} | < /2 which is possible by
Lemmas 4.1-4.4. Then choose k, n so large that ¢!’ < ¢,/4, and finally by
Lemma 4.5 and the above inequality on of , choose 7 so large that of < e/4.
We havethen | ¢.(y) — o1+ 02 — -+ + (= 1)* 6., | < & and hencelim g,(y) =
g(y) exists, and since lim ¢; = 7, is independent of the distribution of the X;
so is g(y), and the proof of Theorem 1 is complete.

5. Additional remarks. It is possible to get a theorem for V, = max <<,
| 8, |/k* similar to Theorem 1 following an identical pattern as above. We
get, in fact

TrEOREM 2. Lef the X, be as in Theorem 1 and set

V. = max | S, |/k"°.

1=k=n
Then
limPr{V <12 T ag i) 4 ok 0B lor ¢ }
i » B0 22 log logn)'* ' (2 log log n)'"*

()
= exp|l— e )

We indicate also the two following strong analogues to Theorem 1, which
we state here as conjectures. Define U, as in (1.1) and let the X, be as in
Theorem 1.
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1. There exists a ¢, > 0 such that the inequality

log log log n (e, — h) log log log log n

2(2 log log n)** (2 log log n)'"*

U, > (2 log logn)'/* +

holds for infinitely many =, or only finitely many n, accordingas h > Oorh <0,
with probability 1.
2. There exists a ¢, > 0 such that the inequality

U > (2 log logn)” + log log logn (c; + 1) log log 1;::5}’2 log n

2(2 log logm)™* (2 log log n

holds for all except finitely many n, or fails for infinitely many n, with probability
1, according as h > 0 or h < 0.
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