PARTITIONS OF THE PLANE INTO SETS HAVING
POSITIVE MEASURE IN EVERY NON-NULL
MEASURABLE PRODUCT SET

BY
PAUL ERD{S AND JOHN C, OXTOBY

1. Introduction. The {ollowing question was posed by D). Maharam: Can
one divide the unit square into two or more measurable sets each of which has
a non-null intersection with every product set 4 X8 of positive measure,
where A and B are subsets of the unit interval?

In this paper we construct a class of such partitions of the plane, including
some that retain the property under various transformations. Not all known
partitions are included in this class; in particular it dees-not include one
found by Maharam and A. H, Stone {unpublished), the first example which
appears to have been considered. As side results we obtain a generalization
of a theorem of Steinhaus, and a theorem on extension of a measure-preservy-
ing homeomorphism from a plane Cantor set. The property of being a mem-
ber of a partition is shown to be nonexceptional in the sense of category in the
space of measurable sets. We also consider the problem of partitioning a gen-
eral product space.

If X and ¥ are measure spaces, we shall say that a set EC X % 1 has prop-
eriy (M) relative to a set UCX X Vil p(EM(A %XB)) >0 whenever p(d XB) >0
and 4 XBCU. Here g denotes the independent product measure. A partition
[E;} of T7 will be called an (M)-partition of U if each set E; has property (M)
relative to [V, Such a partition is necessarily countable if I/ contains a product
set of positive finite measure, A subset E of a measure space with a topology
is said to be metrically dense if p(EMLT) >0 for every nonempty open set L,

It may be remarked that a measturable subset of the plane is metrieally
dense if and only if every equivalent set is topologically dense, and that it has
property (M) relative to the plane if and only if it is metrically dense on
every measurable product set that is metrically dense in itself. -

It is easy to construct a partition of the line or plane into a sequence of
metrically dense sets. It suffices to enumerate a countable base | {/;], and
construct a double sequence of disjoint newhere denst sets € with C 0
and m{C;;)>0. Then the sets D,=U,Cy; constitute such a partition, when
the complement of their union is adjoined to one of the sets,

It is also easv to partition the plane into measurable sets (even uncount-
ably many null sets) each of which has a nonempiy intersection with every
non-null measurable product set. As Helson [2] has observed, following
Steinhaus, any union of straight lines of slope one has this property if it meets
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the x-axis in a dense set. This follows from a theorem of Steinhaus [8], ae-
cording to which, if 4 and B are linear sets of positive measure, the set of
differences {:c—:.r:xEA, }-E‘;B} containg an interval, Pushing this idea a
step further, we shall show that a union of lines of slope one has a won-null
intersection with every non-null measurable product set if it meets the x-axis
in a melrically dense set.

Tueorew 1. A measurable set of the form E= | (x, y}:x—:.r('—:ﬂ:- has prop-
eriy (M) relative (o the plane if and only i D is melrically dense on the line,

Proof. If A and B are linear sets of finite positive measure, then

WEN(A X B)) = f f xo(1 — )xa(z)xa(y)dndy

=ff xp(u}m(u+tl}xn(tr}dmfﬂ=L.1r{'“:|'d’“r

where flu) = fxalu+o)xa(vido=m(AM(x+B)), The function f is non-nega-
tive and continuous [9, p. 50];in fact f{—u) is the convolution x_4 = ¥z of two
functions belonging to L.. Moreover, the above ealeulation with I’ =X shows
that [f{#)du=p(4 XB)>0. Hence f is positive on some interval, and there-
fore [pf(u)du>0 if D is metrically dense on the line. The necessity of the
condition is obvious.

Thus if { Dy} is a partition of the line into metrically dense sets, the sets
E;={(x, y):x—yED,| constitute an (M)-partition of the plane. However,
these sets E; no longer have property (M) when the plane is referred to axes
making an angle of 45% with the original ones. This suggests the further prob-
lem, likewise posed by Maharam and A. H. Stone, of partitioning the plane
into sets that have property (M) when the plane is referred to axes in any
arientation. More generally, if T is any specified class of transformations with
domain and range in the plane, we shall say that {E.| is a T-invariant (M)-
partition of the plane if {tE;} is an (M)-partition of the range of ¢, for each
tET. It ghould be noted that any (M)-partition of the plane is invariant
under the group of translations of the plane.

2. A peneralization of Steinhaus’ theorem. To facilitate the construction
of invariant partitions, we generalize Theorem 1 as follows.

Tueorem 2. IT uix, v) is @ real-valued funciien of class C' on an open set U
in the plane, and if w220 and 1,720 almost everywhere in U, then any set of the
form E={(x, ¥):1u(x, y) ED|, where D is metrically dense on the line, has the
property that u(EM(A XB)) >0 whenever p(UM(4 ¥ B)) >0.

Proof. The open set where 1.750 and %, 70 can be represented as a count-
able union of closed rectangles, For given A and B with u(I7M{4 XB)) >0,
at least one of these rectangles has a non-null intersection with 4 XB. It
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therefore suffices to prove the theorem under the assumption that 4 X Bis
contained in a closed rectangle I'XJ, on which | .| and |, lie between posi-
tive bounds, say 1/A and X, Let u(x, ¥) be redefined outside 7 X.J so that
these bounds hold thronghout the plane, and so that the extended [unction
remains of class C'. Then the equations u=u(x, ¥}, =17, define a 1:1 mapping
of class C' of the (x, ¥)-plane onto the (%, ¢)-plane. The inverse transforma-
tion x=x(n, v), ¥y=v, is likewise of class C’, and its Jacobian 1/, is nowhere
zero, We have

WEN (4 X B)) = f f xolu(, WxalEhaly)ddy

= [[ [ sotwnatetsn, 99xate) - duo

| #a]

I

%f f xo (1) x4 (216, ))xp(y) dudy

- % [ s

where
) = f walale. 9 entitds,

As before, it will suffice to show that f is continuouws and not identically zero.
The latter property follows from the estimation:

f flawydu = % f f R . A

| wa ]

m'%ffxdfﬂxa{?}dﬂy

1
=Tuf.-‘i ¥ B >0,

The function f(u) is a kind of generalized convolution, whose continuity can
be proved in the same way as that of an ordinary convolution, In fact, let
£>0 be arbitrary and let g{x) and kiy} be continuous funetions that vanish
outside I and J, are bounded by 1, and satisfy

[ bt = s@laz<e [ |xal) = i) ] dy <«

Put folz)=fg(x(x, v)}k(v)de; then f; is continuous for all . On any line
u=constant, dv/dx = —u./1,; hence
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L) = fol | = f | xalron, 2)) — glalin, 30} | xa()do
+ [ Letastw o) |4 a0 = 49| s

N ;
éf | xalx) — glx) | :—]d:x +f | xalt) — k(z) | dv
< AMed e .

It follows that fis continuous for all .
Theorem 2 implies the following peneralization of Steinhaus' theorem,

TuroreM 3. If A and B are linear sels of positive measure, and if u(x, v)
is a funciion of class C' on an open set U with p(UM(A XB)) >0, and 14
. =0 and 1,70 almost everywhere in U, then the sel {u(x, v):xSA, yEB
contatny an inlerval.

Proof. Suppose the contrary for some pair of sets /4 and B and function
w(x, ¥). We may assume that 4 and B are bounded and clesed, in which casze
the set { w(x, v)ixEAd, vEB } is closed and nowhere dense, since it is supposed
to contain no interval. The complement [ of this linear set is then metrically
dense on the line, and the set E= {(x, v):u(x, ¥) D} is disjoint to 4 XB,
contrary to Theorem 2.

3. Invariant partitions. To construct a partition invariant refative to &
given class T of C'-transformations, it is sufficient (in view of Theorem 2) to
find a function «(x, ¥} which after transformation by an arbitrary member of
T" has partial derivatives a.e. different from zero. Accordingly, we seek a
[unction whose level lines transform inte a family of curves with tangents
a.e. parallel to neither axis.

For example, let T be the group of affine transformations, and take
w=are tan (y/x). The transformed function w=arc tan ((ex+-dy-+f)/(ax
+hyte)), ad—be#=0, has 1,70 and 2,70 except on at most three straight
lines. It follows that any partition of the plane into sets E;each of which is
a union of rayvs [rom the origin through a set metrically dense on the unit
circle is an (M)-partition which retains the property under all afhne trans-
formations. In particular, such sets E; have property (M) when the plane is
referred to axes in any orientation.

That an {M)-partition can be invariant under a very large class of trans-
formations will now be shown.

b

TeEOREM 4, Let f be a continuous funclion en — w <x <4 = with the
praperty that no function of class €' is5 equal o [ on a set of positive measure
(an example is given below), and let F(x) = [fdx. Let { D} be a partition of the
line into melrically dense sets. Then the sets E;={(x, ¥)iy—F(x)ED:} con-
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stitute an (M)-partition of the plane T-invariant under the class T of all 131
transformalions of elass C"' with open domain and range in the plane and
nowhere vanishing Jacobian.

Proof. By hypothesis, Fisof class €' on (— =, + =), and if G is any func-
tion of class C" on an interval then G'{x) 2 F'{x) a.e, Let { be an arbitrary
member of T, and let ! bé defined on its domain I by the equations £ =£(x, v),
n=nix, ¥). Then {E; is a set of the tvpe considered in Theorem 2, with
wlx, v) =nix, ¥) —FlE(x, ¥)). This function is obviously of class £'; hence it
enly remains to show that w.#0 and w;#0 a.e in U.

Suppose #.=0 on a set of positive plane measure. Then some line y=1y,
meets this set in a set of positive linear measure. That is, #.{x, v
— F'(E(x, o))E:(x, ¥0) =0 on a linear set 4 of positive measure. Let x;&4 be
a point where 4 has density 1. Then E.{xs, y4) #0, since otherwise the Jacobian
of £~ would vanish at (xs, yo). Hence £.(x, ¥5)#0 in an interval about x5, and
the eguations £=£(x, v}, n=nlx, ) define implicitly a function n=0G{£)
of class C' in an interval I about & =£§{xy, 34), with G'(E) =n.(x, vo) /L, va).
Thus G'(£) = F'(£) on the set B=IN{£(x, vo):xEA |, which has density 1 at
£, Hence G'(£) = F'(£) on a set of positive measure, a contradiction. Similarly,
#y#lae in L

A function f(x) with the required properties can be defined as follows.
Let ¢(x) be the distance from % to the nearest integer, and let g, =212
(n=0). Then ¢, (x) = 2¢{w.x/2) is a piecewise linear continuous function made
up of linear segments with slope +a, and range [0, 1]. Define

f#) = I dnla)an
n=
It iz clear that f is continuous on [ — =, 4 = ). Moreover, for any x and # the
points (x5, d.(x-+h)) and (x, @.(x)) lie on the same linear segment of the
graph of ¢, for all k in either 1 /40, <h<1/2a,0r —1/2a,<h<—1/4a, We
shall show that for any such value of & the contribution of ¢, to the difference
quotient of f is dominant. In fact,

fle+ k) — f(x) L G s 8 s dan

k Gp—1 pckon Fk-1 Exn Gb--i

Since ay/ap-1=2%"* and Ga/G. = 2% for k>0, a simple caltuiatic:-p shows
that :

a I g 4a 64
A - s and 3 — i —
bcien G-t T Bus ign @i 15

Consequently, for any value of ¥ and #, the inequality
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w ;izsnni_m

k 7 15

holds for all & in an interval of length 1/4a, contained in (x—1/2a,,
x+1/2a,). 1t follows that if g{x)=f(x) on a set A of positive measure, and
if xy¢=A is a point where A has density 1, then at least one of the derived
numbers of g{x) at x==x, is infinite. Consequently if g is differentiable in an
interval, then p{x)#=f(x) a.e, in the interval.

We now consider another application of Theorem 2 to the construction
of an invariant partition.

Tueores 5. Let F(x) be a function of class C= on (— =, + =) whose Taylor
series at every poinl has zero radius of convergence. Let | D.} be a partition of the
line into metrically dense sets. Then the sets E;={(x, v):y—F(x)ED:| con-
stitute an (M)-partition of the plane which is T-invariant under the class T of
all 1:1 real analytic, nonsinpular transformations with domain and range in the
plane.

Proof. Consider any &7 and let ¢! be defined in its domain U by
E=£(x, v), n=n{x, ¥). As before, let #(x, ¥)=n{x, ) —F(E(x, ¥)). Then « is
of class C= in IV and, by Theorem 2, to show that 1£; has property (M) rela-
tive to 7 it will suffice to show that w,#0 and #,=0 ae. in U In fact, we
shall show that on anv line ¥ =y, the equation %,=0 can hold only at éselated
points {a difference between the present proof and that of Theorem 4). For
suppose the contrary; then for some point (xy, ) in 7 and some sequence
{x.} with limit %y, %.5%%0 and w.(x,, ¥5)=0. Hence na(%a, ¥0) — F'(E(xa, ¥0))
(2, vo) =0 for n=0. 1t follows that £x(xe, ve) #£0, since the Jacobian of ¢
does not vanish at (xs, ). By continuity, £.{x, ) has constant sign through-
out a neighborhood of (xy, v, which we may assume contains all the points
(%, ¥o), Hence the sequence &, =£(%., ¥o) converges to &, £,72&, and F'(L,)
=0:{%n, Vo) /Ex(%n, ¥o) for all # = 0. Also, the equations n=n(x, ¥}, E=E(x, ¥a)
define a real analytic function p=_G(£) in an interval about £, and G'(£)
=n.(%, o) /E-(x, %). Hence G'(£.) = F'(£,) for all #. Because F and & are of
class C= at &, and £ is a point of accumulation of {Eﬂ}, it follews that all
derivatives of F(£) —G(£) vanish at £, Henece the Taylor series of F and G
at & differ by a constant; a contradiction, since the Tavlor series of & has
positive radius of convergence and that of F does not. Similarly, on any line
x=x; the equation 1, =0 can hold only at isolated points.

An example of a function Fix) with the required properties is

o
—3F
Fla) = ¥ nq " cos mix, > where #; = 2%,

im]

Note first, by induction, that for this sequence {u,-},
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1 = 1
g > oy = 8, Iru- 1+Z i 2{, and Tﬂk:‘-‘"i;k,

for all integers k> 1. That F(x) is of class O on (— «, L =) is clear, It re-
mains to show that for each value of %, the sequence a,= {| Fimd(pyh | fml)lin ig
unbounded. We shall estimate @y or sy according as |sin mixg| =1/2 or
| cos myws| 21/2. For each % at least one of these inequalities holds, and the
following compuotations show that the corresponding derived series is domi-
nated by its kth term.

If |sin mese| 2172 then

|7 )|

]

- H y [

E 810 #iXy |

Tl - I
=1

lm LR Shpiati E g%
2 =
1

%

) 228,
= 7 T E
If |cos mexs| 21/2 then

|Fm+1:. (%) | \ ﬂ&u._m: e

Henece for-any xg and &>1 there exists an integer >k (n=2&41 or
2k+2) such that g,> (27/%+%) /242, It follows that lim sup a,= =.

4. The impossibility of certain invariant (M)-partitions. Having found an
(M )-partition invariant under as large a class as that of all 1:1 nonsingular
transformations of class C*, it is natural to ask what upper bounds can be
assigned to T". It is easy to see that if T is the class of all 1:1 measure-preserv-
ing transformations, then no invariant (M)-partition is possible, because any
sef E of positive finite plane measure can be mapped onto a square by such
a transformation, It is also easy to see that no (M)-partition can be invariant
unider all homeomorphisms, Somewhat deeper is the fact that no (M}-parti-
tion can retain the property under all area-preserving automorphisms of the
plane. This is a consequence of the following theorem,

TrarorEM 6. For any plane set E with ulE)>a>0 there exisis anarea-
preserving awlomarphism b af the plane such that k{E) contains a product set of
measure o, Moreover, b can be taken equal to the identity outside some reclangle
' R

Proof. Choose R so that u(ENR) >a, and let P be a perfect, 0-dimensional
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subset of EMRE, interior to &, metrically dense in itself, and such that u(P)
>a; Let Py be a countable dense subset of P, and let Ny =P —P,. Then N; is
the image of the set N of irrational numbers in {0, 1) by a homeomorphism
fi [3, vol. 1, p. 349]. Moreover, Ny is metrically dense in itself and u(N)
=u(P), Let Na be the set of all points with irrational coordinates in a rectan-
gle of area u(P) concentric with R. Let /3 be a homeomorphism of N onto N,
Then the Borel measures defined in I7=[0, 1] by mu(d)=u(fi(4)) and
mz(A) =p{f{4)) correspond under the automorphism f of I defined by the
equation my([0, f(x)]) =ma([0, x1); that is, m(f(4)) =ma(d) for all Borel
gets 4. The transformation fiffi?! is therefore an area-preserving homeo-
morphism of Na—10; onto Ny—Dy, where I}, and I are the countable sets
Dy=Ff"YRy), Di=ff(Ry), and R, is the set of rational numbers in I. Let
Ciand Cs be linear Cantor sets such that G X C:CNo—Dsand p{ G C) =a.
Let Ki=Cy %G and K, =[ifff{&;). Then fy=Ff"Y1T! is an area-preserving
homeomorphism of K, onto K, Since KyCE and K, is a product set of
measure & the proof of Theorem 6 is completed by the following lemma.

Levna A, If by is an area-preserving homeomorplism of Ky onto K., where
K and K are plane Canior seis interior lo o rectangle R, then hy can be extended
lo an area-preserving automorphism of the plane equal lo the idenlily oulside
of R.

Proof. Let I, denote the set of automorphisms of the plane equal to the
identity outside of R. By a theorem of Kuratowski [3, vol. 11, p. 383 ] (essen-
tially due to Antoine) ks can be extended to an automorphism J of the plane,
and we can take I& Hy. Let L be a closed line segment interior to B, By the
same theorem, there exists an automorphism kS H, such that k(L) DK,
and by modifving ks appropriately on the segments of L outside hr!(K,;) we
can insure that p(k(L)) =p(E;) and u(fk(L)) =u(K:) (cf. [6, p. 902, Lemma
17]). Then the measures defined in R by wm(4)=plh(d —L)) and pa(d)
=u(hihs(A — L)} are topologically equivalent [6, p. 887, Corollary 1]. More-
over, since (L) =p (L) =0 there exists an automorphism g equal to the
identity on L as well as outside R, such that ps{g(4)) =p(4) for all Borel
sets [6, p. 888, Corollary 4], It follows that the transformation k=hhaghs?
is an area-preserving automorphism of the plane, equal to the identity out-
side R and equal to fson Kp

Reymargk 1. It would be desirable to have a more direct proof of Theorem
6. In some cases this is easy. For instance, if E is a set of the form
E=1{(x, ¥):y—F(x)EB}, F measurable, m(B)>0, then by Lusin's theorem
there exists a continuous function G(x) equal to F(x) on a set 4 of positive
measure, and the equations x"'=x, ¥ =y—G(x) define an area-preserving
automorphism J such that k[ E) DA X B.

REmark 2. It is an open question whether there exists an (M )-partition
of the plane that retains the property under all 1:1 transformations of class

—e
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€', or under all automorphisms that satisfy a Lipschitz condition.

5. A question of category. In this section we return to the original prob-
lem; that of constructing an (M)-partition of the unit square into two sets,
antl ask whether the property of being a member of such a partition is excep-
tional or not among measurable subsets of the square. Let 5 be the complete
metric space consisting of all measurable subsets E of the unit square ,
equivalent sets being identified, with the usual metrie: g(E, F)=u(ESF).
Ifaset BCQ and its complement £ =Q—Z& both have property (M) relative
to () then so does every set equivalent to E, hence the sets that are members
of some (M)-partition of {} constitute a certain subset M of S,

TeeoREM 7. S—M is of first category in 5.

Proof. Let P denote the set of all EES such that for some pair (4, B)
of linearly measurable subsets of the unit interval, u{(4d XB)—E)=0 and
m(A)m(B)>0. As in §1, m(A)m(B) = fm(AN(x+B))dx and m{AdN(x+B))
>0 on some subinterval of [—1, 1]. Let {I.} be an enumeration of all sub-
intervals of [—1, 1] with rational end points, and let F. be the class of
ordered pairs (4, B) such that m{4M{x+B))>1/n on I,.. Then each pair
(4, B) with mi{d)m (B} >0 belongs to at least one class F,. Hence if we denote
by P, the set of all EES such that u((4 X B)—E)} =0 for at least one pair
(4, B} belonging to F,, then P=U]P,. To show that P is of frst category it
will therefore suffice to show that F, is nowhere dense,

Let >0, E,&5, and €0 be given. Choose a subinterval J of I, with
m(J)<e and let E; consist of all points (%, v) of the unit square such that
x—nEJ. Put Ei=FEs—E;, then p{E:, Eo) Su(Er)<e Take §=m{J)/n and
consider any E&S with g(f, F,) <é. For any pair {4, B) in F, we have

((4 X B) —E)\J(E—E)) 2(AdXB)— E.D (4 XBNE),

hence
w((d X B) = E) 4+ p(E = E;) = p((4 X B) M Ey)

= f xa(x — ¥ixa(®)xa(s)dxdy

mid)
=fm{Aﬁ{:v+ Bljdx =z —— = 5.
7 #

Therefore y((A XB)—E)=8§—p(E, Ei)>0, and so EGP,. This shows that
P, is nowhere dense in S in fact, within any sphere in § of radius 2¢ we have
shown that there is a sphere of radius § that containg no peint of P,

The mapping T TE=E' (complementation) is an isometry of 5. Hence
P\ TP ig likewise of first category. Since P\JTP=S— M, it follows that M
is a residual set in S.

6. Partitions of general product spaces. Turning now to cnnmdmtmn of
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the produet of two general measure spaces, we first show that (M)-partitions
are preserved under isomorphism of the component spaces. Two totally
o-fAnite measure spaces are said to be isomorphic if there exists a measure-
preserving isomorphism between their measure algebras,

Lesma B, If (X, u) and (¥, ) are totally o-finite meéasure sbaces tsonmar phic
respectively to (X7, p') and (V', ¥'"), then the product spaces (X XY, uXv) and
(X" V', w' %K') are isomorphic under a correspondence that makes measurable
product sels correspond to measurable product sets. Thereby any (M)-partition
af XX ¥ corresponds to an (M)-partition of X' X Y.

Proof. We may assume that (X, u) and (¥, ») are finite measure spaces,
since the general case can be reduced to this by a direct sum decomposition
of each. Then any isomorphism between the measure algebras of (X, ) and
(X', p') defines a correspondence between the idempotents (characteristic
functions) of La(u) and L(u') which can be extended uniguely to a unitary
transformation f—f" of La(p) onto Lefu’) which is multiplicative, that is,
such that fifs=/f; a.e. implies f{fj =f} a.e. [7, Theorem 4.4 |. Similarly, let g—g’
be such a mapping of Ly(v} onto Ly(»'). Then the correspondence

é} e (Dely) — z aft (gl ()

defines a linear isometric transformation from a dense subset of L.(u Xp) onto
a dense subset of L.(p'¥#'}), and by continuity this can be extended 1o a
unitary transformation S of L{e X} onto Ly(p' %'}, 8 is likewise multiplica-
tive, hence idempotents correspond to idempotents. The restriction of S to
these defines an {somorphism between the measure algebras of (X XV, i)
and (X' V', u' ') under which product sets correspond to product sets.
Consequently an (M)-partition of either product space determines an (M)-
partition of the other, modulo nullsets,

Tuaeorem 8. The product of fwo totally o-finite measure spaces (X, p) and
(Y, v) adwits an (M)-partition if and only if the measure algebras of (ke piven
spaces are wonalomic.

Proof. Suppose the measure algebra of (X, u) containg an atom. Replacing
(X, u) by an isomorphic space, we can assume that for some point xEX the
set A ={x;} has positive measure, Let X X ¥ =F\JF, be an arbitrary parti-
tion of X X ¥ into measurable sets, and put B = {j.': {2, }’}EE1] L w(BY=0
then (pxp)(ExM (A X ¥))=0. If »(B)>0 then {(pxv){A X B)>0 and {pX»)
(EaM{A % B)) =0. Thus property (M) fails for E; or Es; hence no {M)-parti-
tion of X ¥ ¥ is possible. Similar considerations apply in case (¥, v} contains
an atom, The condition is therefore necessary.

To prove sufficiency, first decompose X and V into finite measure spaces.
By a theorem of Maharam [4], any finite nonatomic measure algebra is a
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direct sum of countably many homogeneous measure algebras, and (after
normalization) any homogeneous measure algebra can be represented as a
product of suitably many replicas of the Lebespue measure space on the unit
interval. Hence, alter appropriate decomposition of the component spaces, it
only remains to prove the theorem for the case in which both (X, u) and
(¥, ¥} are products of families of intervals with Lebesgue measure m. Select
an interval X, and ¥ from each of these families and write X=X, XX,
Y=¥Yox ¥ Let {EH be an (M)-partition of the square XX ¥, and let E;
be the eylinder set in X X ¥ based on Ef. To show that {FE.} is an (M)-
partition of X X ¥, consider any non-null measurable sets A CX and BC 7.
Then 0<u(A) = fdxyfxa{x0, x:)dx;, hence there exists a non-null set A.C X5
and a positive number p such that [fya(x, xi)dx = Py (o). Similarly there
exists a non-null set By ¥, and a positive number g such that [xs(ve, v)dw
= gxa,(ve). Conseguently,

(e X AE (4 X B) = [ [ it so)dzodso [ xatan, w)dzs [ xatom 30

& de f f O T SO WSO, T

= paim X m)(El Ty (ds X By)) > 0. ‘

As an application, consider any two nonatomic measure spaces (X, u)
and (¥, ») with g(X)=s(¥)=1. Let R denote the ring of all finite unions of
measurable product sets in X X V, and let 5 denote the o-ring of measurable
subsets of X X ¥. Between R and § there is another ring of some interest,
namely the ring Ry of all sets with equal outer and inner content, the outer
(inner) content of any set ECX XV being defined as the lower (upper)
bound of p¥» on all supersets (subsets) of K that belong to R, Then pXr on
R, is the least complete extension of g Xv on R as a content [5]. In general R,
contains R as a proper subring; for instance in the case of the square, &,
includes all Jordan measurable subsets as well as all measurable product sets.
The existence of an (M)-partition of X X ¥ implies that there are sets in §
with the property that every equivilent set has inner content zero and outer
content one. Consequently I is a proper subclass of S, even neglecting sets
of measure zero. It follows that under present assumptions the Boolean
algebra of By modulo sets of content zero is never a e-algebra and, considered
as a metric space, it is always incomplete.

As a second application of Theorem &, let (X, ) and (¥, #) be two replicas
of the Kakutani space [1] corresponding to Lebesgue measure on the unit
interval. That is, X = ¥ =the compact, totally disconnected, Hausdorff space
determined by the Stone representation of the Lebesgue measure algebra,
and p=w»=the completion of the measure defined on the closed open subsets
of X by the representation. Then the nullsets of g are the nowhere dense sub-
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sets of X, and the domain of ¢ consists of all gsets of the form A& N, where 4
is closed open and N is nowhere dense. Consequently every non-null measur-
able product set in X X V contains a base neighborhood, and so a subset of
X% ¥ has property (M) if and only if it is metrically dense in X X ¥. The
(M)-partitions of this product space are therefore identical with its parti-
tions into metrically dense sets. The existence of such a partition implies that
(X ¥V, px¥r) is not a Kakutani space, since a Kakutani space does not ad-
mit a partition into even two dense measurable sets. Nevertheless, by
Lemma B, (X XV, uXr) is isomorphic to Lebesgue measure on the unit
square, and therefore isomorphic to (X, u) itself,
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