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1 . Introduction . The following question was posed by D . Maharam : Can
one divide the unit square into two or more measurable sets each of which has
a non-null intersection with every product set A XB of positive measure,
where A and B are subsets of the unit interval?

In this paper we construct a class of such partitions of the plane, including
some that retain the property under various transformations . Not all known
partitions are included in this class ; in particular it does-not include one
found by Maharam and A . H . Stone (unpublished), the first example which
appears to have been considered. As side results we obtain a generalization
of a theorem of Steinhaus, and a theorem on extension of a measure-preserv-
ing homeomorphism from a plane Cantor set . The property of being a mem-
ber of a partition is shown to be nonexceptional in the sense of category in the
space of measurable sets . We also consider the problem of partitioning a gen-
eral product space .

IfX and Y are measure spaces, we shall say that a set ECX X Y has prop-
erty (M) relative to a set UCX X Y if µ(En (A XB)) > 0 whenever µ(A XB) > 0
and A XB C U. Here p, denotes the independent product measure . A partition
{E, } of U will be called an (M)-partition of U if each set E has property (M)
relative to U. Such a partition is necessarily countable if U contains a product
set of positive finite measure . A subset E of a measure space with a topology
is said to be metrically dense if µ(El U) >0 for every nonempty open set U.

It may be remarked that a measurable subset of the plane is metrically
dense if and only if every equivalent set is topologically dense, and that it has
property (M) relative to the plane if and only if it is metrically dense on
every measurable product set that is metrically dense in itself .

It is easy to construct a partition of the line or plane into a sequence of
metrically dense sets . It suffices to enumerate a countable base { U ; } , and
construct a double sequence of disjoint nowhere dense sets Ci, with Ci,C U,
and m(Ci;) >0 . Then the sets D i =U;C i ; constitute such a partition, when
the complement of their union is adjoined to one of the sets .

It is also easy to partition the plane into measurable sets (even uncount-
ably many null sets) each of which has a nonempty intersection with every
non-null measurable product set. As Helson [2] has observed, following
Steinhaus, any union of straight lines of slope one has this property if it meets

Received by the editors June 30, 1954.

91



92

	

PAUL ERDÖS AND J . C. OXTOBY

	

[May

the x-axis in a dense set. This follows from a theorem of Steinhaus [8 ], ac-
cording to which, if A and B are linear sets of positive measure, the set of
differences {x-y:xEA, yEB } contains an interval . Pushing this idea a
step further, we shall show that a union of lines of slope one has a non-null
intersection with every non-null measurable product set if it meets the x-axis
in a metrically dense set .

THEOREM 1 . A measurable set of the form E = { (x, y) : x- y ED } has prop-
erty (M) relative to the plane if and only if D is metrically dense on the line .

Proof . If A and B are linear sets of finite positive measure, then

(E n-(A X -B)) = ff xD (x - y)xA(x) xB(y)dxdy

= ff xD(u)XA(u + v)xB(v)dudv = f f(u)du,
D

where f(u)=fXA(u+v)XB(v)dv=m(Af(u+B)) . The function f is non-nega-
tive and continuous [9, p . 50 ] ; in factf ( - u) is the convolution X-A * XB of two
functions belonging to L2 . Moreover, the above calculation with D =X shows
that ff(u)du=y (A XB)>0 . Hence f is positive on some interval, and there-
fore fDf (u)du > 0 if D is metrically dense on the line . The necessity of the
condition is obvious .

Thus if {D i } is a partition of the line into metrically dense sets, the sets
E,={(x, y) :x-yED i } constitute an (M)-partition of the plane. However,
these sets E i no longer have property (M) when the plane is referred to axes
making an angle of 45° with the original ones . This suggests the further prob-
lem, likewise posed by Maharam and A. H. Stone, of partitioning the plane
into sets that have property (M) when the plane is referred to axes in any
orientation. More generally, if T is any specified class of transformations with
domain and range in the plane, we shall say that {E i } is a T-invariant (M)-
partition of the plane if { tE 2 } is an (M)-partition of the range of t, for each
tET. It should be noted that any (M)-partition of the plane is invariant
under the group of translations of the plane .

2. A generalization of Steinhaus' theorem. To facilitate the construction
of invariant partitions, we generalize Theorem 1 as follows .

THEOREM 2 . If u(x, y) is a real-valued function of class C' on an open set U
in the plane, and if u x ~ 0 and u y 5z 0 almost everywhere in U, then any set of the
form E = { (x, y) : u(x, y) ED } , where D is metrically dense on the line, has the
property that µ(En(A XB)) >0 whenever µ(Un(A XB)) >0 .

Proof. The open set where uz 00 and uy 5;-,~ 0 can be represented as a count-
able union of closed rectangles . For given A and B with µ(Un(A XB)) >0,
at least one of these rectangles has a non-null intersection with A XB. It
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therefore suffices to prove the theorem under the assumption that A XB is
contained in a closed rectangle I X J, on which I ux I and I u, I lie between posi-
tive bounds, say 1/X and A . Let u(x, y) be redefined outside IXJ so that
these bounds hold throughout the plane, and so that the extended function
remains of class C'. Then the equations u=u(x, y), v=y, define a 1 :1 mapping
of class C' of the (x, y)-plane onto the (u, v)-plane. The inverse transforma-
tion x=x(u, v), y=v, is likewise of class C', and its Jacobian 1/u x is nowhere
zero. We have

µ(E n (A X B)) = ff XD(U(X, y))xA(x)xB(y)dxdy

= ff XD(u)XA(x(u, v))XB(v) I

ffxDuxAxu()( (,

1

ff(u ) du,

where

f(u) = f XA(X(U, v))XB(v)dv .

As before, it will suffice to show that f is continuous and not identically zero .
The latter property follows from the estimation :

f f(u)du

	

ff XA(X(U, v))XB(v)

_, ff XA(x)xB(y)dxdy

1

uxI

1

u x j
dudv

dudv

v)) XB (v)dude

1
_

	

(AXB)>0.

The function f(u) is a kind of generalized convolution, whose continuity can
be proved in the same way as that of an ordinary convolution . In fact, let
e>0 be arbitrary and let g(x) and h(y) be continuous functions that vanish
outside I and J, are bounded by 1, and satisfy

f I XA(x) - g(x) I dx
< E,

	

f I X13(y) - h(y) I dy < e.

Put fo(u) = fg(x(u, v))h(v)dv ; then fo is continuous for all u . On any line
u = constant, dv/dx=-ux/% ; hence
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I A u) - AM I - f I xl(x(u, v)) - g(x(u, v)) I XxB(v)dv

+ f I g(x(u, v)) XB(V) - h(v) I dv

f I X x) - g(x) I ux dx + f I Xs(v) - h(v) I dv
uI,

< x2E+E.

It follows that f is continuous for all u .
Theorem 2 implies the following generalization of Steinhaus' theorem .

THEOREM 3 . If A and B are linear sets of positive measure, and if u(x, y)
is a function of class C' on an open set U with µ(U(1 (AXB))>0, and if
u.54-0 and u, Ft':0 almost everywhere in U, then the set { u(x, y) : x EA, y EB }
contains an interval .

Proof. Suppose the contrary for some pair of sets A and B and function
u(x, y) . We may assume that A and B are bounded and closed, in which case
the set {u(x, y) :xEA, yEB } is closed and nowhere dense, since it is supposed
to contain no interval . The complement D of this linear set is then metrically
dense on the line, and the set E _ { (x, y) : u(x, y) ED } is disjoint to A XB,
contrary to Theorem 2 .

3 . Invariant partitions . To construct a partition invariant relative to a
given class T of C'-transformations, it is sufficient (in view of Theorem 2) to
find a function u(x, y) which after transformation by an arbitrary member of
T has partial derivatives a .e. different from zero . Accordingly, we seek a
function whose level lines transform into a family of curves with tangents
a.e. parallel to neither axis .

For example, let T be the group of affine transformations, and take
u=arc tan (y/x) . The transformed function u=arc tan ((cx+dy+f)/(ax
+by+e)), ad-bc 0, has ux 5-4 0 and u,00 except on at most three straight
lines. It follows that any partition of the plane into sets Ei each of which is
a union of rays from the origin through a set metrically dense on the unit
circle is an (M)-partition which retains the property under all affine trans-
formations . In particular, such sets Ei have property (M) when the plane is
referred to axes in any orientation .

That an (M)-partition can be invariant under a very large class of trans-
formations will now be shown .

THEOREM 4 . Let f be a continuous function on - -o <x < + - with the
property that no function of class C' is equal to f on a set of positive measure
(an example is given below), and let F(x) =fofdx. Let {D i } be a partition of the
line into metrically dense sets . Then the sets Ei = { (x, y) : y - F(x) ED i } con-
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stitute an (M)-partition of the plane T-invariant under the class T of all 1 :1
transformations of class C" with open domain and range in the plane and
nowhere vanishing Jacobian .

Proof. By hypothesis, F is of class C' on (- oo , + oo ), and if G is any func-
tion of class C" on an interval then G'(x) X F'(x) a.e. Let t be an arbitrary
member of T, and let t -1 be defined on its domain U by the equations ~ =~(x, y),
i7=i7(x, y) . Then tE i is a set of the type considered in Theorem 2, with
u(x, y) =a7(x, y) -F(~(x, y)) . This function is obviously of class C' ; hence it
only remains to show that ux ;0 and u,7-'0 a.e . in U.

Suppose ux =0 on a set of positive plane measure . Then some line y = y o
meets this set in a set of positive linear measure. That is, f7 x (x, y o )
- F'(((x, yo))Sx(x, yo) =0 on a linear set A of positive measure. Let xoEA be
a point where A has density 1 . Then ~x(x0, yo) X 0, since otherwise the Jacobian
of t-1 would vanish at (xo, yo) . Hence t; x(x, y o ) X 0 in an interval about xo, and
the equations ~=~(x, yo), i7=17(x, yo) define implicitly a function -7=G(~)
of class C" in an interval I about 1 o=~(xo, yo), with G'(~) =r7x(x, yo)/~x(x, yo) .
Thus G'(~)=F'(~) on the set B=Ill {~(x, yo) :xEA{, which has density 1 at
~o . Hence G(E) =F'(~) on a set of positive measure, a contradiction . Similarly,
u,X 0 a .e . in U .

A function f(x) with the required properties can be defined as follows .
Let O(x) be the distance from x to the nearest integer, and let a.= 2n(1-1)11
(n >> 0) . Then On (x) =20(a, x/2) is a piecewise linear continuous function made
up of linear segments with slope ±an and range [0, 1 ] . Define

00
f(x) = Z 0n(x)/an-1 .

n=1

It is clear that f is continuous on (- -o, + x) . Moreover, for any x and n the
points (x+h, 0n (x+h)) and (x, On(x)) lie on the same linear segment of the
graph of 0. for all h in either 1/4a n <h < 1/2an or -1/tan <h < - 1/4a. . We
shall show that for any such value of h the contribution of yin to the difference
quotient of f is dominant. In fact,

Ax + h) - f(x)
h

> an -

	

ak -

	

4an

an-1

	

O<k<n ak-1

	

k>n ak-1

Since ak/ak_1 = 2 3k-1 and an/an+k C 2-4k for k>0, a simple calculation shows
that

ak

	

1 an

	

4an

	

64
< -

	

and

	

< -
O<k<n ak-1

	

7 an-1

	

kan ak-1

	

15

Consequently, for any value of x and n, the inequality
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Ax -[- h) - f(x)

	

6 23-2 - 64

h

	

7

	

15

holds for all h in an interval of length 1/4an contained in (x-1/2an ,
x+1/2an) . It follows that if g(x) =f(x) on a set A of positive measure, and
if x0 EA is a point where A has density 1, then at least one of the derived
numbers of g(x) at x=x o is infinite . Consequently if g is differentiable in an
interval, then g(x) Xf(x) a.e. in the interval .

We now consider another application of Theorem 2 to the construction
of an invariant partition .

THEOREM 5 . Let F(x) be a function of class C°° on + oo) whose Taylor
series at every point has zero radius of convergence . Let { D i } be a partition of the
line into metrically dense sets . Then the sets Ei = { (x, y) : y- F(x) EDi } con-
stitute an (M)-partition of the plane which is T-invariant under the class T of
all 1 : 1 real analytic, nonsingular transformations with domain and range in the
plane .

Proof. Consider any tET and let t -1 be defined in its domain U by
~=~(x, y), 7]=77(x, y) . As before, let u(x, y)=77(x, y)-F(~(x, y)) . Then u is
of class C°° in U and, by Theorem 2, to show that tEi has property (M) rela-
tive to U it will suffice to show that u,zX0 and u, X 0 a.e. in U . In fact, we
shall show that on any line y=yo the equation ux =0 can hold only at isolated
points (a difference between the present proof and that of Theorem 4) . For
suppose the contrary ; then for some point (x o , yo) in U and some sequence
{xn } with limit x0, xn 5zxo and u x(x n , yo) =0. Hence 77x(xn, y o) - F' (~( xn, yo))
5x(xn, yo) = 0 for n >=0 . It follows that 5x(xo, yo) 7~0, since the Jacobian of t-1

does not vanish at (xo, yo) . By continuity, 5,(x, y) has constant sign through-
out a neighborhood of (x o , y o), which we may assume contains all the points
(xn, yo) . Hence the sequence ~n =~(xn , yo) converges to ~o, ~nX5o, and F'(~ n )
=17x(xn., yo)/5.(x., yo) for all n>>0. Also, the equations 77=17(x, yo), ~=~(x, yo)
define a real analytic function 77=G(~) in an interval about ~o, and G'(~)
=,qx(x, yo)/Sx(x, yo) . Hence G'(~ n ) =F'(~n) for all n . Because F and G are of
class C°° at ~o, and ~o is a point of accumulation of { ~ n } , it follows that all
derivatives of F(s) - G(E) vanish at ~o . Hence the Taylor series of F and G
at ~o differ by a constant ; a contradiction, since the Taylor series of G has
positive radius of convergence and that of F does not. Similarly, on any line
x=xo the equation uy =0 can hold only at isolated points .

An example of a function F(x) with the required properties is

F(x) _ I ni
2i-

cos nix,
i=1

[May

Note first, by induction, that for this sequence { ni l,

where ni = 2 4i .
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k-1 2k+1-2i

	

1

	

3k

4
nk => 1 + ni

	

, and
4

nk > 2 ,
i=1

for all integers k > 1 . That F(x) is of class C`° on . (- -c, + - ) is clear . It re-
mains to show that for each value of x o the sequence a„ _ (I F(' ) (xo) /n!) 1 /- is
unbounded . We shall estimate a2k+1 or a2k+2 according as I sin nkxol ? 1/2 or
I cos ni0 xo I >_ 112. For each k at least one of these inequalities holds, and the
following computations show that the corresponding derived series is domi-
nated by its kth term .

If I sin nkxol >_ 1/2 then

(2k+l)

	

2k+1-2i
F

	

(xo) I =

	

ni

	

sin nixo

1

	

k-1
>

	

2k+1-2i -

	

- 2i
- nk - ni

	

8
2

	

i-1

	

z=

1 nk > 23 ' .
4

If I cos nkxol >_ 1/2 then

F(2k-f2)(x) Io
-~ 2k+2-2i
~, ni

	

cos nixo
i=1
1 2

	

k-1 2k+1-2i

	

1
nk - nk 1 -{-

	

ni

	

> - nk >2
i-1

	

4

Hence for any x0 and k > 1 there exists an integer n > k (n = 2k -- 1 or
2k+2) such that an > (2 3k/2k + 2)/2k+2 . It follows that lim sup an =-0 .

4. The impossibility of certain invariant (M)-partitions . Having found an
(M)-partition invariant under as large a class as that of all 1 : 1 nonsingular
transformations of class C", it is natural to ask what upper bounds can be
assigned to T. It is easy to see that if T is the class of all 1 : 1 measure-preserv-
ing transformations, then no invariant (M)-partition is possible, because any
set E of positive finite plane measure can be mapped onto a square by such
a transformation . It is also easy to see that no (M)-partition can be invariant
under all homeomorphisms . Somewhat deeper is the fact that no (M)-parti-
tion can retain the property under all area-preserving automorphisms of the
plane. This is a consequence of the following theorem .

THEOREM 6 . For any plane set E with u(E)>a>0 there exists an area-
preserving automorphism h of the plane such that h(E) contains a product set of
measure a. Moreover, h can be taken equal to the identity outside some rectangle
R .

Proof. Choose R so that µ(ETIR) >a, and let P be a perfect, 0-dimensional

9 7
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subset of E(1R, interior to R, metrically dense in itself, and such that µ(P)
>a. Let P o be a countable dense subset of P, and let N1 =P-P o . Then N1 is
the image of the set N of irrational numbers in (0, 1) by a homeomorphism

f1 [3, vol . I, p. 349]. Moreover, N1 is metrically dense in itself and µ(N1 )
=µ(P) . Let N2 be the set of all points with irrational coordinates in a rectan-
gle of area o(P) concentric with R. Let f2 be a homeomorphism of N onto N2 .
Then the Borel measures defined in 1=[0, 1 ] by m1(A) =µ(f~(A)) and
m 2 (A) =µ(f2 (A)) correspond under the automorphism f of I defined by the
equation m 1 ( [0, f(X)1)=M2([0, x]) ; that is, m 1 (f(A)) =m 2(A) for all Borel
sets A . The transformation f'ff1 is therefore an area-preserving homeo-
morphism of N2-D2 onto N1-D1 , where D 2 and D1 are the countable sets
D2-f2f-'(Ro), D1 =ff(Ro), and Ro is the set of rational numbers in I. Let
C, and C2 be linear Cantor sets such that C1XC2CN2-D2 and µ(C1 XC2) =a .
Let K2= C1 X C2 and K1=fff2 1 (K2 ) . Then h o =f2f1fi 1 is an area-preserving
homeomorphism of K1 onto K2 . Since K1CE and K2 is a product set of
measure a the proof of Theorem 6 is completed by the following lemma .

LEMMA A. If h o is an area-preserving homeomorphism of K 1 onto K2, where
K1 and K2 are plane Cantor sets interior to a rectangle R, then h o can be extended
to an area-preserving automorphism of the plane equal to the identity outside
of R.

Proof. Let Ho denote the set of automorphisms of the plane equal to the
identity outside of R. By a theorem of Kuratowski [3, vol . IT, p . 383 ] (essen-
tially due to Antoine) ho can be extended to an automorphism h1 of the plane,
and we can take h1EHo . Let L be a closed line segment interior to R . By the
same theorem, there exists an automorphism h2EHo such that h 2 (L)DK1i
and by modifying h 2 appropriately on the segments of L outside h2'(K1) we
can insure that µ(h 2(L)) =µ(K1 ) and µ(h ih2(L)) =µ(K2 ) ( cf . [6, p. 902, Lemma
17]) . Then the measures defined in R by µ1(A)=µ(h2(A-L)) and µ2 (A)
=µ(hlh2(A-L)) are topologically equivalent [6, p . 887, Corollary 1] . More-
over, since µ1(L) =µ2 (L) = 0 there exists an automorphism g equal to the
identity on L as well as outside R, such that µ2(g(A)) =µ1 (A) for all Borel
sets [6, p. 888, Corollary 4] . It follows that the transformation h=hlh2gh2 1

is an area-preserving automorphism of the plane, equal to the identity out-
side R and equal to ho on K1 .

REMARK 1 . It would be desirable to have a more direct proof of Theorem
6. In some cases this is easy . For instance, if E is a set of the form
E = [(x, y) : y - F(x) EB } , F measurable, m(B)>O, then by Lusin's theorem
there exists a continuous function G(x) equal to F(x) on a set A of positive
measure, and the equations x'=x, y'=y-G(x) define an area-preserving
automorphism h such that h(E) iDA XB .

REMARK 2 . It is an open question whether there exists an (M)-partition
of the plane that retains the property under all 1 :1 transformations of class
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C', or under all automorphisms that satisfy a Lipschitz condition .
5. A question of category. In this section we return to the original prob-

lem, that of constructing an (M)-partition of the unit square into two sets,
and ask whether the property of being a member of such a partition is excep-
tional or not among measurable subsets of the square . Let S be the complete
metric space consisting of all measurable subsets E of the unit square Q,
equivalent sets being identified, with the usual metric : p(E, F) =µ(E-&F).

If a set ECQ and its complement E' =Q-E both have property (M) relative
to Q then so does every set equivalent to E, hence the sets that are members
of some (M)-partition of Q constitute a certain subset M of S.

THEOREM 7. S- His of first category in S .

Proof. Let P denote the set of all EES such that for some pair (A, B)
of linearly measurable subsets of the unit interval, ,u ((A XB) -E) =0 and
m(A)m(B) >0 . As in §1, m(A)m(B) = fm(A(1(x+B))dx and m(A Th(x+B))
>0 on some subinterval of [-1, 11 . Let {In } be an enumeration of all sub-
intervals of [-1, 1 ] with rational end points, and let F, be the class of
ordered pairs (A, B) such that m(A Th(x+B)) > 1/n on I,,. Then each pair
(A, B) with m(A)m(B) >0 belongs to at least one class F. . Hence if we denote
by P~ the set of all EES such that µ((A XB) -E) =0 for at least one pair
(A, B) belonging to F., then P = U, P.. To show that P is of first category it
will therefore suffice to show that P, is nowhere dense .

Let n>0, Eo ES, and e > 0 be given. Choose a subinterval J of I. with
m(J) <e and let E, consist of all points (x, y) of the unit square such that
x-yEJ. Put E1 =Eo-E,, then p(El , Eo) <µ(E,) <e . Take S=m(J)/n and
consider any EES with p(E, E l) < S . For any pair (A, B) in r, ,, we have

((AXB)-E)U(E-B 1)D(AXB)-E1 D((AXB)nE,),

hence

µ((A X B) - E) + lj,(E - E1 ) >= µ((A X B) (1 E,)

= ff XJ(X - y)xA(x)xB(y)dxdy

= f m(A (1 (x + B))dx >
m(J)

_	= S.
n

Therefore µ((AXB)-E)>5-p(E, E l)>0, and so E(EP .n . This shows that
P,, is nowhere dense in S ; in fact, within any sphere in S of radius 2e we have
shown that there is a sphere of radius S that contains no point of Pn, .

The mapping T: TE=E' (complementation) is an isometry of S. Hence
PUTP is likewise of first category . Since PUTP=S-M, it follows that M
is a residual set in S .

6. Partitions of general product spaces . Turning now to consideration of
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the product of two general measure spaces, we first show that (M)-partitions
are preserved under isomorphism of the component spaces . Two totally
a-finite measure spaces are said to be isomorphic if there exists a measure-
preserving isomorphism between their measure algebras .

LEMMA B . If (X, µ) and (Y, v) are totally a -finite measure spaces isomorphic
respectively to (X', µ') and (Y', v'), then the product spaces (X X Y, µXv) and
(X' X Y', µ' Xv') are isomorphic under a correspondence that makes measurable
product sets correspond to measurable product sets . Thereby any (M)-partition
of X X Y corresponds to an (M)-partition of X' X Y' .

Proof . We may assume that (X, µ) and (Y, v) are finite measure spaces,
since the general case can be reduced to this by a direct sum decomposition
of each. Then any isomorphism between the measure algebras of (X, /'k) and
(X', µ') defines a correspondence between the idempotents (characteristic
functions) of L2(µ) and L2(µ') which can be extended uniquely to a unitary
transformation f--*f of L2 (µ) onto L2(µ') which is multiplicative, that is,
such that f1.12 =f3 a.e. implies fiff =f3 a.e. [7, Theorem 4 .4] . Similarly, let g--4g'
be such a mapping of L2 (v) onto L2 (v') . Then the correspondence

n

	

n

czfi(x)gi(y) -~

	

czfi (x')gi (y')

defines a linear isometric transformation from a dense subset of L2(µ XP) onto
a dense subset of L2(µ' Xv'), and by continuity this can be extended to a
unitary transformation S of L2(µ Xv) onto L2 (µ' Xv') . S is likewise multiplica-
tive, hence idempotents correspond to idempotents . The restriction of S to
these defines an isomorphism between the measure algebras of (X X Y, µ Xv)
and (X' X Y', µ' Xv') under which product sets correspond to product sets .
Consequently an (M)-partition of either product space determines an (M)-
partition of the other, modulo nullsets .

THEOREM 8 . The product of two totally a-finite measure spaces (X, µ) and
(Y, v) admits an (M)-partition if and only if the measure algebras of the given
spaces are nonatomic .

Proof . Suppose the measure algebra of (X, µ) contains an atom. Replacing
(X, µ) by an isomorphic space, we can assume that for some point x 0 EX the
set A = { xo } has positive measure . Let X X Y=E 1 . JE2 be an arbitrary parti-
tion of X X Y into measurable sets, and put B = {y : (xo, y) GE, } . If v(B) =0
then (jXv)(Ejf(AXY))=0. If v(B) >0 then (µXv)(AXB)>0 and (µXv)
(E2n(A XB)) =0 . Thus property (M) fails for E1 or E2 ; hence no (M)-parti-
tion of X X Y is possible . Similar considerations apply in case ( Y, v) contains
an atom. The condition is therefore necessary .

To prove sufficiency, first decompose X and Y into finite measure spaces .
By a theorem of Maharam [4], any finite nonatomic measure algebra is a
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direct sum of countably many homogeneous measure algebras, and (after
normalization) any homogeneous measure algebra can be represented as a
product of suitably many replicas of the Lebesgue measure space on the unit
interval. Hence, after appropriate decomposition of the component spaces, it
only remains to prove the theorem for the case in which both (X, µ) and
(Y, v) are products of families of intervals with Lebesgue measure m. Select
an interval Xo and Yo from each of these families and write X =X o XX,,
Y= YoX Y1 . Let { Ef } be an (M)-partition of the square X o X Yo , and let E ti
be the cylinder set in X X Y based on Ei. To show that { Ej } is an (M)-
partition of X X Y, consider any non-null measurable sets A CX and B C Y.
Then 0<µ(A)=fdxofXA(xo, x l)dxl , hence there exists a non-null set AoCXo
and a positive number p such that fXA(x o , x l )dx l _pX A0 (x o ) . Similarly there
exists a non-null set BoC Yo and a positive number q such that fXB(yo, yl)dyi

gxno(yo) . Consequently,

(IA X v)(E,n (A X B)) = ff X_,,,(xo, yo)dxodyo
f

x (xo, x l)dx lf XB(yo, yl)dyl

pqff XEv(xo, yo)XAo(xo)XB 0(yo)dxodyo

= pq(m X m)(E . n (A o X B o )) > 0 .

As an application, consider any two nonatomic measure spaces (X, µ)
and (Y, v) with µ(X)=v(Y)=1 . Let R denote the ring of all finite unions of
measurable product sets in X X Y, and let S denote the o-ring of measurable
subsets of X X Y. Between R and S there is another ring of some interest,
namely the ring R1 of all sets with equal outer and inner content, the outer
(inner) content of any set ECX X Y being defined as the lower (upper)
bound of u Xv on all supersets (subsets) of E that belong to R . Then µ Xv on
Rl is the least complete extension of µXv on R as a content [5 ] . In general Rl
contains R as a proper subring ; for instance in the case of the square, R1
includes all Jordan measurable subsets as well as all measurable product sets .
The existence of an (M)-partition of X X Y implies that there are sets in S
with the property that every equivalent set has inner content zero and outer
content one . Consequently R1 is a proper subclass of S, even neglecting sets
of measure zero . It follows that under present assumptions the Boolean
algebra of R1 modulo sets of content zero is never a o-algebra and, considered
as a metric space, it is always incomplete .

As a second application of Theorem 8, let (X, µ) and (Y, v) be two replicas
of the Kakutani space [1 ] corresponding to Lebesgue measure on the unit
interval . That is, X= Y=the compact, totally disconnected, Hausdorff space
determined by the Stone representation of the Lebesgue measure algebra,
and µ=v=the completion of the measure defined on the closed open subsets
of X by the representation . Then the nullsets of .o are the nowhere dense sub-
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sets of X, and the domain of ,u consists of all sets of the form A&N, where A
is closed open and N is nowhere dense . Consequently every non-null measur-
able product set in X X Y contains a base neighborhood, and so a subset of
X X Y has property (M) if and only if it is metrically dense in X X Y. The
(M)-partitions of this product space are therefore identical with its parti-
tions into metrically dense sets . The existence of such a partition implies that
(X X Y, µ. Xv) is not a Kakutani space, since a Kakutani space does not ad-
mit a partition into even two dense measurable sets . Nevertheless, by
Lemma B, (X X Y, µ Xv) is isomorphic to Lebesgue measure on the unit
square, and therefore isomorphic to (X, µ) itself.
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