
1 . Lusin [4] (see also Dienes [1, pp . 463, 464/ or Landau [3, 5150 constructed a
power series
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and diverges at every point of the unit circle C . Recently, Herzog [2] gave an ex-
ample of such a series whose coefficients are real, nonnegative, and satisfy not
only (2), but even the stronger condition an = O(n-u 3 ) . The theorem which we are
about to state and prove implies the existence of a series (1) which diverges every-
where on C and satisfies, e.g., the condition 0 < an < (n log n) -lh (n = 3, 4, • • • ) .

THEOREM 1. Let {bn} be a sequence of complex numbers satisfying the con-
ditions

(3)

	

Ibn1 > (bn+l1

	

(n = 0, 1, . . .)

and

Then there exists a power series (1), with

(5)

	

an equal to either bn or 0 (n = 0, 1,

which diverges everywhere on C .

The monotonicity condition (3) cannot be entirely dispensed with, since every
00

	

Spower series E I cnztn with cn-IP0 and JEtn/tn+i < ao converges on a set

which is everywhere dense on C . Condition (4) probably cannot be relaxed at ail;

indeed, it has been conjectured that every power series Zbn zn satisfying (4)

converges almost everywhere on C .
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2. We proceed to the simple constructive proof of Theorem 1 . Obviously we may
assume that

(6)

	

n ao
bn = 0 .

LEMMA. Let the sequence {bn} (n = 0, 1, ---) satisfy conditions (3), (4) and
(6). Then there exists an increasing sequence of integers ki (i = 1, 2, • • • ) which
satisfies the condition

ao

E	 1

ki+i - ki

	

'i=1

ki+l - 1

1< E

	

Ibn l<2

	

(1=1,2, . . .) .
n-ki

Indeed, let k, be the smallest positive integer v for which I bv I < 1 and, hav-
ing determined k l , . . . . ki, let ki+1 > ki be determined by the inequalities

ki+l - 2

	

ki+l - 1

IbnI 1,

	

z IbnI > 1
n-k,

	

n-ki

(such an integer ki+l exists, since (4) implies that Z'* I bn l = ao . Then (8) clearly
0

holds, and we have, for i > 1,

ki+i - 1

E I bn 1 2 << I bki l

ki+1 - 1

Ibn l < 2lbk,1 < 2 k, -ki-1'
n=ki

	

n-ki

therefore (7) follows from (4) .

Remark. Under the hypothesis (3), condition (4) is not only sufficient but also
necessary for the existence of a sequence {ki} satisfying the conclusion of the
lamina. Indeed, if {ki} is any such sequence, then

ki+i - 1

	

ki+1 - 1

'E I bnI= > Ibki+, I ` I bnI > I bki+l I > ki+2 1 ki+1 'n=ki

	

n-ki

and therefore (7) implies (4) . (Only the first of the inequalities (8) was used, here .)

We are now ready to construct the series (1) of the theorem. For i = 1, 2, - • ,
let zi be the point on C whose argument is
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fur which jarg11ti4 - 2v a/3I n/3. Clearly

ki+l - 1

Qf°) +QIO +QJ2) > Z Ibn j ;
n=ki

hence, for at least one v = vi, we obtain from (8) the inequality 1/3 <q( Vi) < 2 .
We now define the coefficients an as follows : for n < kl, an = 0; for ki < n <ki+1+
we choose

an = bn if j arg bnzi - 2 vil:/3I < v/3,

an = 0

	

otherwise .

We claim that the series (1) thus constructed diverges everywhere on C . Indeed :

Moreover, writing

ki+l - 1

1 %zn

n=ki

ki+l - 1

>

	

I~n.i=iL (
vi)

> 1/6 .A

n=ki

ki+1 - 1

Pi(Z) = Z-ki

	

azn

n=ki

we have, for the derivative of this polynomial in i z < 1,

ki+l - ki - 1
IP1(Z)I <

	

mlak+ml IZm-1 Ii
m=0

ki+1 - 1

< (ki+1 - ki - 1) 1 l a mI
m=ki
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ki+1 - 1

< (ki+l - ki) 1 Ibn l < 2(ki+i - ki ).
n-ki

Hence the variation of P i(z) on the are Ai is smaller than

2(ki+1 - k i) Izi+l - zil < 2 (ki+l - ki)24(ki+1 - ki) = 1/12 .

Since I Pi (zi) I > 1/6 we have therefore, for every z on Ai,

ki+1 - 1

1 a zn ' = IPi(z)I > 1/6 - 1/12 = 1/12 .

n-ki

Since every point on C belongs to infinitely many arcs AL , it is clear that the series
(1) cannot converge anywhere on C . This completes the proof .

3 . Our theorem admits some easy extensions . We mention the following .

Under the assumptions of the theorem there exists a series (1) which satisfies
(5) and for which

N

lim sup ~` anzn =
N-0.-

n-0

everywhere on C .

Indeed, it is clear from the lemma that there also exists an increasing sequence
of integers ki which satisfies (7) and for which

ki+, - 1

Bi =
1

I bnI ->a o0

n-ki

as i *,a . Operating with such a sequence {ki}, we get IPi (z)I > B,/12 for all z
on Al, and the result follows .

It should also be remarked that though we can not dispense altogether with the
condition of monotonicity, we can easily relax it in various ways. For instance, it is
sufficient to assume that there exist disjoint blocks (Ni, Ni+1) such that Ibnl is

monotone within each block Ni < n < Ni+i, the sum
E

I bJ over each block is

lwthtrr0reI away from zero, and fhe serien 	extended over 111 blocks, is di-

Vergent. •T ai nuau~Iuute It,y wtflttn Itta block Va" almo 1w reltriae •ek1 iey cue*rlaltt weaker
raq~tlre+nte+it/tt .

The following is another obvious consequence of Theorem 1 : Let {an } and
{~} (n = 0, 1, • • •) be two sequences of complex mumtiers such that

L
I On - On I s
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is a monotone divergent series . Then there exists a power series (1) with y,, equal
either to a n or 10 On (n = 0, 1, . . .), which diverges everywhere on C.

All the results above extend also to Dirichlet series T ane - ° satisfying the

restriction an+, - an = O(1), as well as to Laplace integrals fao
a(s)eet 0(t)dt

0
satisfying the condition that, for some H and all T,

f
T+H

0(t)dt > 1 .
T

4 . The following result is somewhat connected with the main problem of this
paper .

THEOREM 2 . If
` I bn I _ -o, then there exists a power series (1) which satis-

fies (5) and which diverges everywhere on a residual set on C .

The condition E' I bn j = ao is clearly necessary in order that (1) fail to converge
uniformly and absolutely. The proof of the present result is even simpler than that
of Theorem 1; in particular, the lemma is not needed. We choose a sequence {zi }
which is dense on C, and we write

{yi} = { z1, za0 Ziy zs. za. Zif . . .} .

Then, having determined the sequence {ki} according to (8), we choose the coeffi-
cients an so that IPi (vi) I > 1/8. Since then I Pi (z) I > 1/6 on an arc of C through
yi, the result follows . A slight modification yields a series whose partial sums are
unbounded on a residual set on C .
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