ON POWER SERIES DIVERGING EVERYWHERE ON THE
CIRCLE OF CONVERGENCE

A. Dvoretzky and P. Erdos

1. Lusin [4] (see also Dienes [1, pp. 463, 464] or Landau [3, §15]) construeted a
power series

(1) z anz"

n=0

which satisfies the condition

) lim apn=0
n-yco

and diverges at every point of the unit circle C. Recently, Herzog [2] gave an ex-
ample of such a series whose coefficients are real, nonnegative, and satisfy not
only (2), but even the stronger condition a, = O(n~¥*%). The theorem which we are
about to state and prove implies the existence of a series (1) which diverges every-
where on C and satisfies, e.g., the condition 0 <a, < {nlogn)-'/2 (n=3, 4, --).

THEOREM 1. Let {b,} be a sequence of complex numbers satisfying the con-
ditions

(3) [Ba|> [bpy1| @=0,1,-)
and
4) E ]bnlﬂzw.

n=0

Then theve exists a power series (1), with
(5) a, egual to either b, or 0 (n=0, 1, +-+),

which diverges everywhere on C.
The momtonicity condition (3) cannot be entirely dispensed with, since every

power series 2 cnz™ with cp>0 and z t,/ta+1 <  converges on a set
which is everywhere dense on C. Condition (4) probably cannot be relaxed at all;

indeed, it has been conjectured that every power series Z b, z® satisfying (4)
converges almost everywhere on C.
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2. We proceed to the simple constructive proof of Theorem 1. Obviously we may
assume that

(6) 2 By B

LEMMA. Let the sequence {b,} (=0, 1, «--) satisfy conditions (3), (4) and
(8). Then there exists an increasing sequence of integers k; (i =1, 2, «-) which
satisfies the condition

- 1
@ 2“11-1'1*‘1== ’
i=1
and for which
kjyy =1
(8) 1< 2 [bal<2 (=12, ).
n=k;

Indeed, let k, be the smallest positive integer v for which |b ,l < 1 and, hav-
ing determined k,, ---, kj, let k. > k; be determined by the inequalities

kit - 2 kit) - 1
2 Ibl<1, X In>1
Il-k.i n.ki

(such an integer k;,, exists, since (4) implies that E” |bgn| = ©. Then (8) clearly
1]

holds, and we have, for i > 1,

kijsy - 1 ki - 1
D oml<ing T vl <o)< 2R
nuki naki

therefore (7) follows from (4),

Remark. Under the hypothesis (3), condition (4) is not only sufficient but also
necessary for the existence of a sequence {k;} satisfying the conclusion of the
lomma. Indeed, if {k;} is any such sequence, then

kjpp - 1 Ky < 1
1
ﬁ lbal*> b, | Z.; [l > by |> =1,

and therefore (7) implies (4). (Only the first of the inequalities (8) was used, here.)

We are now ready to construct the series (1) of the theorem. For 1=1, 2, -+,
let z; be the point on C whose argument is
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Pevcanme ob A amd @9 e sosgpenes {wy ] 00 1, 0, Vot oven ywlwoes dlonses on 4
wind theredone v by prodnd on € Brelorygga G Il intioly saeny of e wyem '

A el omige wigs g ey
Comnbler now the moabworen b,z (hy wo k), wml dul QE ") (e =10, 0, )
tespmater Thiee Hm 2: II-“], catondold oyver Thoso hiwdives o e The vangge by nwoohyy
fur which |;u.‘g bng' - 2w a/:il: u/3. Clearly

ki - 1

af s vt > X v,
kg

hence, for at least one ¥ = V;, we obtain from (8) the inequality 1/3 < q‘ Vi) <2.
We now define the coefficients ap, as follows: for n <k, ap = 0; for k; <n <lkj,),
we choose

an=bp, i |argbpz} - 2v37/3| < 7/3,
an =0 otherwise,

We claim that the series (1) thus constructed diverges everywhere on C. Indeed:

ki'fl =1 k‘+l -1
v
> wd2t VD |anzl| = 1@ Y > 1/6.
n-kt p-ki

Moreover, writing

ki1 - 1
Pi(z) =27 2 22"
nsk;
we have, for the derivative of this polynomial in lzl <1,
ki+] - Kk - 1
Pl ¥ mlageml e
m=0

ki+1 - 1
S.cki'l'l _ki. 1) 2 ]‘ml
m=k;



34 A. DVORETZKY and P. ERDOS

kipy -1
< (k341 - ki) 2 [bal < 264 - k;).
n=k;

Hence the variation of P;(z) on the arc A; is smaller than

1
2541 - k){Zzy41 - 25] < 2044 - ks’m) = 1/12.
Since |P;(z;)| > 1/8 we have therefore, for every z on A;,

kiyy -1
n
T o
n*ki

Since every point on C belongs to infinitely many arcs A;, it is clear that the series
(1) cannot converge anywhere on C. This completes the proof.

= |Py(z)| > 1/68 - 1/12 = 1/12.

3. Qur theorem admits some easy extensions. We mention the following.

Under the assumptions of the theorem there exists a series (1) which satisfies
(5) and for which

N
lim su 2" = w
n=0

everywhere on C,

Indeed, it i8 clear from the lemma that there also exists an increasing sequence
of integers k;which satisfies (7) and for which

Ki+p = 1
B; = 2 [bg| >
n=k;
as i »». Operating with such a sequence {k;}, we get |P;(z)| > B;/12 for all z
on Aj, and the result follows.

It should also be remarked that though we can not dispense altogether with the
condition of monotonicity, we can easily relax it in various ways. For instance, it is
sufficient to assume that there exist disjoint blocks (N;, N,.,) such that |b_| is

monotone within each block N, <n <N, the sum J_ |by| over each block is
ool nwiy from zoro, and (hoe sorios E Ih,,l’ . oxtended over all blocks, is di-

vargont. The monotontetty wilhin the block ecan alao be roplaced by cortiin weaker
requiromoenta,

The following is another obvious consequence of Theorem 1: Let {a,} and
{8,} (m=0,1,-..) be two sequences of complex mumbers such that 2 |ag - B4l



DIVERGENT POWEN SEIUINS Jh

is a monotone divergent series. Then lhere exisls a power series (1) with w,, equal
either to a, or lo B, (n=0, 1, +.), which diverges cverywhere on C.

All the results above extend also to Dirichlet series 3 ae ~™° satistying the

restriction A4, - A, = O(1), as well as to Laplace integrals I” a(s)e®* ¢(t)dt

satisfying the condition that, for some H and all T,
T+H
I #(t)dt> 1.
T

4. The following result is somewhat connected with the main problem of this
paper.

THEOREM 2. If z |ba| = =, then there exists a power series (1) which satis-
fies (5) and which diverges everywhere on a residual set on C.

The condition 2 |hn| = {8 clearly necessary in order that (1) fail to converge

uniformly and absolutely. The proof of the present result is even simpler than that
of Theorem 1; in particular, the lemma is not needed. We choose a sequence {s;}
which is dense on C, and we write

{Yi} ={z,, 24 2,, 2y Zyy 2y, }

Then, having determined the sequence {k;} according to (8), we choose the coeffi-
cients a, so that |P;(y;)| > 1/6. Since then |P;(z)] > 1/6 onanarc of C through
¥i, the result follows. A slight modification yields a series whose partial sums are
unbounded on a residual set on C.
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