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ON CONSECUTIVE INTEGERS
BY

P. ERDOS

A theorem of SYLVESTER and SCHUR!) states that for every %
and n# > k the product n(n 4 1) ... (» -+ & — 1) is divisible by a
prime $ > %, or in other words the product of % consecutive
integers each greater than % always contains a prime greater than .
Define now f{%) as the least integer so that the product of f(k)
consecutive integers, each greater than % always contains a prime
greater than k. The theorem of SYLVESTER and SCHUR states that
f(k) < k. In the present note we shall prove

Theorem 1. There is a constant ¢; > 1 so that

I

f(k) = Cq "]'.ag’—k"* 3

(1)
. k

In other words the sequence # + 1, -+ 2, ..., 441, t = I:cl l__k:l'
0g

# = £ has at least one prime > k.

The exact determination of the order of f(%) is an extremely
difficult problem. It follows from a theorem of RANKIN2) that
there exists a constant ¢, > 0 so that for every k2 we have consecu-
tive primes ¢, and p, , satisfying
log % .loglog %.loglogloglog %

(logloglog k)?

k < pf‘ < ?r+1 < 2k: Pr—rl_?r >0y (2)

Clearly all prime factors of the product (p, 4 1) ... (P — 1)
are less than 2. Thus

log k.loglog & .loglogloglog %
f(k) ~ 03 g Og Ob Og Og g g

3
(logloglog £)2 )
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The gap between (1) and (3) is extremely large. It seems likely
that f(k) is not substantially larger than the greatest difference
Pri1— Pp B < P, < P,41 < 2k. Thus by a conjecture of CRAMER 3)
one might guess

(k) = (1 + o(1)) (log K)*. (4)

The proof or disproof of (4) seems hopeless, there is of course
no real evidence that (4) is true.

It would be interesting, but not entirely easy to determine f(k)
say for all 2 < 100. It is not even obvious that f(k) is 2 non de-
creasing function of % (in fact I can not prove this). A theorem of
PoéLya and STORMER states that for u > (%), the product #(u+1)
always contains a prime factor greater than %, thus f(k) can be
determined in a finite number of steps, but as far as I know no
explicite estimates are available for u,(k), which makes the de-
termination of f(&) difficult. In general it will be troublesome to
prove that f(k) < a(k) (=(k) is the number of primes < &). It is
easy to see that

f(2) =2, {(3) = (4) =3, [(5) = f(6) = 4.
It seems likely that f(7) = f(8) = f(9) = /(10) = 4, but f(13) > 6.
In the proofs of theorems | and 2 we will make use of the follow-

ing consequences of a result of HOHEISEL-INGHAM #):
xﬂ
a(x + %) — a(x) ~ -
log x

F<h< (*)

from which it follows for each pair of consecutive primes p,,
pﬂ+1: "
Pusr— P = 0(£2Y) (**)
To prove Theorem 1 we first of all make use of (**): there
exists a constant c,, so that
Pria — br < Ca B ()
It immediately follows from (5) that for # < k% at least ome
of the integers

u+1, ut+2 ..., u+1t = clio—g—g]

is a prime, for sufficiently large c,.

%) H. CraMER, On the order of magnitude of the difference between consecutive
prime numbers, Acta Arithmetica 2 (1936) 23—46,

%) A. E. InGram, On the difference between consecutive primes. Quart. J. Math.
8 (1937) 255—266.
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Thus in the proof of Theorem 1 we can assume # > kY. If
Theorem 1 would not be true then for each ¢;> 0 we could find a
u > k%% so that all prime factors of

-+ f) ” __[ ek
( ¢ , u >R = Ty

would be less than or equal to &.
WA .
Lemma. pr"f;( ; ) then p* < u -+ . %)
The Lemma is well known and follows easily from Legendre’s
formula for the decomposition of 2! into prime factors.
Clearly

(u + t) o e B o (“ ha ‘)t > (—f:") ©

Now if all prime factors of (u t_l t) would be less than or equal

to k, we would have from (6) and from the above Lemma
t
(<(i)zuem o
Now by # > k"> and t < k (t < k can be assumed by the theorem
of SYLVESTER and ScHUR) we obtain from (7) and from
3k
2log k
u'f? < (1 4 )™ < oBhMor & (8)

Thus (8) leads to a contradiction for ¢; > 6, which completes the
proof of Theorem 1.

Define g(k) as the smallest integer so that among % consecutive
integers each greater than % there are at least g(k) of them having
prime factors greater than £. The theorem of SYLVESTER and SCHUR
asserts that g(k) > 1. We prove

Theorem 2.

a(k) <

k
g(k) = (1 + o(1)) T

The sequence &k + 1, ..., 2k clearly contains m(2k) — m(k) =

k —_— k
= (1 4+ o(1)) oy primes, or g(k) < (1 + o(1)) e Thus to

) p%// u means that p%u and 21 x w.
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prove theorem 2 it will suffice to show that if # > % the sequence
nt+1l,nd2 ..., n4+k (9)

k
contains at least (I -+ ol integers having prime factors
ok g g P

greater than k.
a) If k < n < 2k the integers (9) contain by the prime number
theorem
aln + k) —a(n) = (1 1)) ——
(- B) — ) = (1 + o) 1o
prime numbers. Thus we can assume # > 2&.
b) Assume first 2k < #u < k*:. By (*) there are least

k
(1 + (l)) % primes amongst the integers (9), but since
R
#n > 2k there are also at least (1 + o(1)) W integers of the

form 2p, p > k, since among the integers

7 n—i—k
[5]+n [

k
there are at least (1 + o(1)) W primes.
Since
(1 (1) o {1+ 0(1) g = (14 0(1)) 7o
3log k 2.31logk ' log &

we can assume # > k2.

¢) Next we show that there is a constant &, > 0 such that if
kB > k, and 1 > k%2 there are at least k/6 integers of (9) having
prime factors greater than k. For if not, we have (as in the proof
of theorem 1) by the Lemma and by (6) for an arbitrary large 2 a
n > k2 such that

(”:k)ki (ni—k)<(n+k)k}6+:tk)

or
w(k)

k) <hn-+B ¥ <(nitk

which is clearly false if % is sufficiently large.

2,1 al)
3

Tk



128

Remark: 2= 10, # = 12 shows that g(k) can be less than
7(2k) — w(k). :
Theorem 3. Amongst the integers (9) there are at least

k
(1 + o(1)) Tk which do not divide the product of the others.
og
Here we only assume n = 0 (and not n > k). If » = & this
follows immediately from Theorem 2 (since a prime greater than %
can divide at most one of the integers (9)). If # < & the primes

k
n 4 =3 < p < n + k divide only one of the integers (9) and their

number is ¥ ) For # = O and & > 5 the sequence

k 1
Rmh ( log &
(9) contains exactly (%) —sr(i) =13 ke + 0 ( e )integers

2 log % log &
which do not divide the product of the others, thus Theorem 3
is best possible.
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