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1. Let f{t} be a real-valued function. R. P. Boas ) called f{f)
odd about the point (x, f(x)) if for all ¢ except possiblv a set of
measure (

fx+ 8] + v — 0 — 2f(x) =0 (1)

If f{t) is odd about several points (x,, flx,)) it is to be understood
that the exceptional set may depend on x,.

Boas 1) proves among others that if f{f) is periodic, bounded on
a set of positive measure, and satisfies (1) for a set of x's having
positive measure then f{f} is equivalent to a constant (i.e, f(i) is
constant almost everywhere). He also shows there exists a bounded
periodic function not equivalent to a constant which is odd about a
denumerable set of points, He proposes the guestion if a bounded
periodic f{#) exists not eguivalent to a constant which is odd about
a noncountable set of points. He remarks that it is clearly necessary
to put on f{¢) some restriction like boundedness since every additive
function (that is, every solution of the functional equation
flx -+ 9) = f(x) + Hy)) satisfies (1) for all x.

We shall prove that such functions do exist, We shall also con-
sider the more general functional equation

Zn=tpp flz + cpn) — flz) = 0 (2]

where the y ., ¢, are given complex numbers, 23, = 1, ¢, 3£ 0.
We shall prove that if f(u) is an essentially bounded complex-valued
function of the complex vanable », not equivalent to a constant,
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which satisfies (2) identically in » for at least one value of the
complex variable = then !
§Lb. Tt a0 [ 22) | =0 (—m<ns<ed) ()
| L
Conversely, if this condition i5 satisfied then (2} has a bounded
solution, not equivalent to a constant, for a set of 2's of power ¢
that is everywhere dense in the : plane.

2. Theorem 1. There exisls a bounded function ft), not
equivalent fo a constant, which salisfies (1) fdentically in @ for a non-
measwrable sef of x's which is poerywhere dense und of power c.

Let H be a HaMmEL basis of the real numbers, x, an arbitrary
element of H, and put H_ = H — {x,}. Every real number ¢ can be
written, in a unigue way, as a finite sum ¢ = fgx, 4 E.i!':;:x“‘hJ
where x, € H_ and the &'s are rational numbers, &, + 0. We shall
write iy = k() for the coefficient of ¥, in this decomposition of £.
Then  Aylrely <= rede) = Falislty) -+ rafglts) for any veal &4, £ and
rational »;, 7y

Obvigusly, the set X, of real numbers x for which y{x) = 0 is
non-measurable, of the power ¢, and everywhere dense. We use X,
as the set of &'s for which (1) is satisfied. We define j{f} as follows:

fih =0 itke X, (4)

Clearly, f{t) is bounded and not equivalent to a constant. Equation
(1) is satisfied identically in ¢ for all x € Xy To sce this we have
only to remark that if £ € X, then (x 4+ {) € X, and all summands
in {1) vanish. If t ¢ X, then (x + ) ¢ X, and &(x - ) = £ (1),
henee fix + 1) = — flx — &), and (1) holds again,

We remark that f{f) is periodic. Every x £ A is a period,

3. Wenow turn to equation (2}, We first prove that the existence
of 24 bounded solution implies that condition (3) holds.

Theorvrem 2, If fin) is essentially bounded, not eguivalent to
@ constant, and satisfies (2) for almost all w and at least one value of =
then (3} holds.

It 18 no restriction to asseme (2) is satisfied for 3, = 0 since we
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he Imay otherwise use ¥ =z — 2, Flu) = flie + gg). Also we may

3)

W
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assume f(0) = 0 sinee if flu) satisfies (2} so does flu) — f(0). We
‘then have
B0t Y fle ) = O (5)

for almost all . Putting ¢, = grmbibm g — W (g by yreal),
Fe" ") = g%, %), equation (5] becomes

E’-.'ﬁ e g[j. T8 ¥ T ‘r}m:' = [5}
This equation is satisfied for almost all ¥, y by the essentially
bounded function g(x, ¥).

Nowlet a,, ..., 4y be a rational basis for the numbers a,, ...,
4, and By, ..., By a rational basis for b,, ..., b,. Thatis, 4,, ...,
Agand B,, ..., By are linearly independent over the rationals, and
there are integers .., b,,, such that

a, =2 ta,, A, b, =2 B m=1,....m
Ea—a = ... =d, =000 hy=08=...=b, =0 we take
the corresponding basis to be vacuous.

Leta, plk=1,...,K;l=1, ..., L) be any integers. Equation
(6} implies
e - e el T Zeapdy+ b+ 2B =0 {7)

- for almost all x, 3. Let x, y be chosen such that (7) helds and such

' that the set of numbers g(x + a,, + Zrapd, ¥ + ba + Zi 5B}
(@@, =0 £1, +2 ...;m=1,..., n) is bounded. With these
numbers as coefficients we form the Fourier series 2)

Emﬂ}-g{ﬂ" o, + e d, vy + b, + Zi fiB).

exp (iZeagdyry + 12, B5,)  (8)
It represents a ScHWARTZ' distribution ¥) on the torus 75 whose
points are the (K + L)-tuples (ry, ..., 75, 81, 00 0, 85), where 7, s
are real numbers modulo 2x A, 27 B ' By (7) we have

Lo Lo i1 Vi BIX 8+ Ty, ¥ 4 b+ 21 fiBy).

ExXp i Bragd ey H i 2 hEs) =0,
or after renaming the a's, f's
Swe glx + Zxagdy, y+ ZipB) exp (i Zpapd i + 1S 8B,s)) -

s Zmy g expl— i Zpa, Ay, — i 50,,B5)=0. (9
| 'Sm_m:].tum to-be done over all integral values for oy vl g, iy <o) 'ﬁi}'
8L Seawanrts Théorie des Thstribations, Hermann and Cie, Paris 1951, tome

FL Ch VIL L — The theary of distributions is used here only toavoid somewhat
lengthier, bat P'ru?:ah]y more familiat argumente. on weal convergence
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Now assume condition (3) is not satisfied. That is, there exists
a number £ > 0 such that .

| Eﬂ' Y Exp{_ 'ﬂ:gmf | ':J’ms:l =2 {1DJII

for all real #, s. Because of the rational independence of the numbers
sy Agand 8y, oo, By the points (dyy; ..., A B
B;s) (— vo < r, s < oo} are everywhere dense on 75 %, It follows
that

| Zmymwexpl— i Zp el e — i 200, Bis; | = &

on 75 Therefore, (9) implies that Fourier series (8) represents the
zero distribution on 7% 7%, which is possible only if ail the coefficients
in the series are zero. Thus, g{x, ¥) = 0 for almost all ¥, v. This is
contrary to the hypotheses of the theorem. It [ollows that (10)
cannot held.

The proof shows that the boundedness of the numbers

elxy + E_i' apdy, Yo + b B,

assuming that they do not all vanish, for some fixed x;, ¥4 and ay,
g, =0 41, +2 ..., already implies condition (3). We may also
replace essential boundedness of g(x, ¥) by the condition of essential
boundedness of (1 + 2 + ¥2~~ g(x, ¥) for some sufficiently large V.
Themn, as in the case of bounded g{x, v}, Fourier series (8) converges
to a distribution ¥).

4. The solution of equation (2) is, like that of equation (1},
constructed with the aid of 4 Hamen basis. Let H be such a basis of
the complex numbers over the field Cle, 65, - .., €,), which is the
field resulting from adjoining the numbers =), ¢y, ..., ¢, to the
rational real numbers, Let z, be an arbitrary element of i, and put
H_= H — {z;}. Every complex number # can be written, in a unique
way, as a finite sum # = hyzy + Z bz, where z, € H_and the #'s
are rational funetions with rational real coefficients of ey, ¢a . .0 640
i, = 0. We write again by = Jy(u) for the coefficient of =, in this
decomposition. The set Z, of complex numbers z for which /&, (z}=0
is non-measurable, of the power ¢, and everywhere dense. Of the
same character is Z,, the complementary set.

In the following we write, as before, ¢, = ¢"=""n (a, b, real).
The lemma to be proved is independent of condition (3).

$} Lic. Footnote 3,
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Lemma. For every pair of real numbers v, s there exisis a
faenction fle) such that

(@) f(#) =0 on Z, | Hw) | = 1 om Z,
(B) | Zm e fl5 + et — fiz) | =0 if neZ,
= | Eon g eM 0t Elml) | i g e T
for all gy

Using the function Aylu) defined above put fg(u) = g% +ibelu
{a@glie), fglu) real). Then define

fluw) =0 if HE"JE,;, (11)
— laotuir+ boluts if weZ,

This funetion obviously satisfies assertion (@) of the Lemma as well
as the first part of (8). I & Z,,, u € Z, then hy(z + c.0) = coh(i) =
=__£ﬂw+ﬁqt1.«].! b Fam!u]]: thus HZ el Cm“} s t.'t'ium1‘—'Jlnﬂﬁ.ﬂ"ﬂiﬂ!r‘FN[ﬂﬂﬁﬁl
while f(z) = 0. This proves assertion (4 of the Lemma.

In this lemuma, as in the following theorem, no use is made of
the condition En 9, = 1.

If there are numbers », s for which

II L

Emym | £ :‘f(_- = )=EI {Iz]
| € |

then the function f{u) of the Lemma, constructed for these numbers

¥, 5,15 a solution of (2). We prove a stronger result, the exact converse

of Theorem 2.

Theorem 3. If condition (3) holds then there evists a bounded

funclion f{u), flu) = 0 on Z,, | f(u) | = 1 on Z,, which satisfies (2)
identically tn w for all z € Z,,
Let ¥, s, (k= 1,2 ...) be so chosen that
: . ]
¥ LT Y et
|};m ¥ | = i =
Detine the sequence of functions
fula) =0 if we 2,
= ilsoluiretyiuin) if ue Z,
Then, by the preceding Lemma,
E i
| Zim i (2 + O 18) — fil2) | < — (13)

k
for all complex #, and 2z £ 7,
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The range H, of the function Ay#%) on the complex numbers u is
denumerable. Let H, be ordered as a sequence: Ho={hy, fgs, ...}
and put kg, = et (g B real). Select a sequence of positive
integers #; such that

Tim eM0rng bt — ¢
A —=a
exists for 1=1,2, ...
Now define f(u) by

flw) =0 il ueli,
= g if weZ, hyiu) = hy,.
Then f(u) = lim f, («t) for all complex s. Obviously, f(x) = 0 on Z,,
L
| f{at) | = 1 on Z,. Inequality (13) implies that f{u) satisfies (2) for

z e £, identically in .
As in Theorem |, the constructed solution is periodic. Every
z € £, is a period of f{u).

5. Let ¢, = £ where ¢_ is a primitive s-th root of unity. Then
equation (12) issatisfied withr =0, s =1, 3y, =1 = ... =3, =
= I/n. If we let H be a HAMEL basis of the complex numbers over
the field Cle,, £y, &5, .. .} then £ as defined in 4. is independent of #
and so is the function f{u) (with » = 0, s = 1) as defined in (11).
Hence, f(u) satisfics, for z € Z,, simultaneously the equations

I
f{zJ=IE”=|f{z+¢:j':u} =, ) [14)
and we have

Theorem 4. There exists a bounded function (1), nol equiva-
lent o a comstant, which at every z from a non-measurable everyiehere
dense sel £y of power ¢ equals the arithmelic average of flu) vver the
vertices of any vegular polvgon with cenler al .

Hw=ys=...=9y,=1/n and the ¢, are real positive
numbers, a, = log e,,, then putting £ = exp(ir) in equation (12}
we have Zm-y £ = 0 to be satisfied by some £ of modulus 1.
Clearly there exists a £ satisfying these conditions if the ¢ form an
arithmetic progression, that is the ¢, form a geometric progression,

Another noteworthy case is Z%-19, = 0. Then equation (12
is satisfied by r == s = 0, no matter what the ¢,, are.
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If the ¢, ¢y ..., ¢, are multiplicatively independent, that is
. '_ﬁf‘, Qr N ‘:uﬂ I
for integers py, Py, ... P, implies py =Py = ... = p_ =0, then
- at least one of the n-tuples a,, ..., a,; by, ..., b, is rationally
independent. In this case it is readily seen that condition (3) is
equivalent to 14
max [y, | < 327l (15)
‘a condition in which the ¢, do not enter at all.

(Received Jan. 28, 1554)
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