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1 . In this paper we shall be concerned with infinite series whose terms are
real numbers. Suppose that the series

(1)
x

an
n=l

is absolutely convergent and has the sum s . Then, as is well known, every rear-

rangement, S' a ;, of (1) also converges and has the same sum s . If, however, (1)
n=1

converges, but not absolutely, then, according to Riemann's classical rearrangement
theorem [3, p . 235, or 2, p . 318j, for every real number s', there exists a rearrange-
ment of (1) whose sum is s' .

Assume, now, that (1) is C 1-summable [1, p . 7, or 2, p. 464], and that its C1-

sum is a . Consider the set of all C' 1 -summable rearrangements of (1) ; what is the
nature of the corresponding set of ('1-sums? We are going to answer this question ;
the answer turns out to be somewhat more complicated than Riemann's rearrange-
ment theorem (and also more difficult to obtain). We shall show, namely, that, for

any C,-summable series (1), the rearrangement set (cf. Definition 1 below) consists either

of a single number, or o f all numbers o f the form a H - P I (), 0, + 1, + 2, . . .) for some

particular real numbers f3 f0 and a, or of all the real numbers. Moreover, given any

x, there exists a C,-summable series (1) whose rearrangement set consists of the single

number a.; and, given any / - 1- 0 and a, there exists a C,-summable series (1) whose

rearrangement set consists of all numbers of the form a+v/I (v=0,

	

1, +2, . . .) .

We introduce

Definition 1 . The set of numbers g such that the C1-sum of some rearrangement

o f (1) is o, will be de-noted by R and called the rearrangement set o f (1) .
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In case (1) converges, the answer to our question is immediate, because the
C,-sum of a series whose sum is s, is s [1, p . 100, or 2, p . 461]. Hence, if (1) con-
verges absolutely, every rearrangement of (1) has the C l-sum s; if (1) converges
conditionally, then, for every real number a', there exists a rearrangement of (1) whose
C 1 -sum is a' . Since this case is settled, we shall assume, from now on, that (1) is
not only C 1-sumrnable, but is also divergent .

If lim a,, -- 0, then the answer is again immediate :
71 _CC

an examination of Riemann's

proof of his rearrangement theorem shows that, for every real number a', there
exists a rearrangement of (1) which actually converges to a', and hence has the C 1 -
sum a' . An example of this case is the series 1- 2 - 2 + 1 + s + s --- 4 - 1 - 4 - 4 +
where the nth group of consecutive terms with the same sign contains n terms, each
of which is equal to (- 1)n -l/n; this series obviously diverges, and is easily seen to
have the C,-sum 2 .

§ 2. Instead of assuming, as in the preceding case, that lim a,, =0, let us sup-
x

pose merely that {a n,} has a subsequence {a nk } such that lim ank=0 and :~ ' an klk->

	

k=0
diverges . We shall show that, given an arbitrary real number a', there exists a

x
rearrangement,

	

a n , of (1), whose C1-sum is a' .
n=1

We shall employ the notation s n = al 4- a2 +

	

+ a,, 6n = (s1 + 82 + ... + sn)/n

(n==1, 2, 3, . . .), and define s ;, . a ;, analogously for ~ a ;, . Our problem, then, is to
n=1

00
show that there exists a rearrangement,

	

an, of (1), such that lim a ;, =a' .
1

	

n-x

Since (1) is divergent and C 1-summable, the subseries of positive terms of (1)
diverges, and the subseries of negative terms of (1) diverges . Furthermore, because
of our suppositions in the last paragraph but one, there is a divergent subseries of
x

a nk consisting exclusively either of non-negative or non-positive terms, and there
k=0

is no loss of generality in assuming that the former is the case ; this subseries, in
turn, contains a convergent infinite subseries . The sequence {a n } is thus seen to
contain infinite subsequences {b„}, {c n }, {dn} with the following properties :

x
(i) b,,<0 (n=0, 1, 2, . . .), and

	

bn diverges ;
n=0

(ii) c„-0 (n=0, 1, 2,
x

. . .), and :~ c 7 , converges ;
71-0

(iii) d,, > 0 (n=0, 1, 2,
x

. . .), lira d,,= 0, and ~ do diverges .



Now let e, > 4 E2 > . . . > 4k -' Ek > . . . > 0, E, > 2 I a l -- a' I , and Jim Ek = 0. We define
;C--

a rearrangement, L a', of (1), by means of induction, as follows : Put m 1 =1,
u.1

a ;m , = a, = a, . Then si = a = a 1 , so that

	

and 1 si

	

Let k > 1 .
and suppose that the terms

(2)

(3)

(these inequalities hold for k==1, according to the preceding sentence). There is a
first term, call it aik-1 of {a„}, which has not been used in forming the sequence (2) .

If sm k + a (lk 1) > a' + Ek~
1 then, according to (i), there exists a finite subsequence of

terms b;k 1) . b>k 1)

	

, b` - 1 ' of {b } not already singled out of {a n } in the course of
this induction, such that

sI . a(k+1)
-T- bi 1) -' b(k - 1)

	

bu -1) < a , + Ek+l
2

(if s,

	

a(k 1) < a' + Ek+l then simply ignore b(k+l)

	

(k+u„,,

	

1

	

2

	

,

	

. . ., bu

	

wherever they occur ;

an analogous statement holds for d(lk 1'

	

dvk 1) and ,,,

	

considered
below) . If
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1

a,, a, . . ., amk

	

(Mk > 1)

have already been defined so as to constitute a finite subsequence of {au} such that

orM, - a' I < Ek and Is',, k - d I < e,12

b1)

	

b(k+l)

	

' _ Ek-1
1

	

'

	

--a-

	

2

then, according to (iii), there exists a finite subsequence of terms dik+l) d2k+l)

	

d`v +l)

of {d,} not already singled out of {a n } in the course of this induction, such that
dik+1) _

Ek+l/2 (i=1 1 2, . . ., z7) and

+
(+')+b(k+1) + . . . + b(u+n d(+1) + . . . + dvk+1) _ a

, Ek, 1 .2

According to (ii), there exists a finite subsequence of terms cjk ' 1) , czk 1) , . . . , c(k-1) of
{c„} not already singled out of {a„} in the course of this induction, the number, u•,
of these terms being as large as we please, such that

(k+1) .1 (k -- 1) L . . . ± (k-1)

	

'

	

Ek ._,(4)

	

Cl

	

C.>

	

Cu

	

< 6 --

	

2
'

	

(k+1)

	

(k+l)

	

(k, 1)
(S k +a1

	

+ b,

	

+ . . . -I bu

	

+

+ dlk+1) + . . .
+ dvk+l) ) •
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If we put
'

	

- (k+1)

	

'

	

_ (k , 1)

	

'

	

(k+1)

	

'

	

b(k 1)
amk-i.1 -C1

	

, . . . , LL„, k+w- C,

	

, a,,k+w :1 al

	

r am, w-i 2 - 1

	

r

Cbmk w 2e+1 - b(uk
1)> a 'mk , w+u 2-

-d('

	

mk+w U v 11
1) . .

	

-d(kv+1)--+-

	

-

	

o

then it is evident, from (3), (4), and the definition of a, as the centroid of the
system of points 811 s 2 , . . . , s',,, that, by taking u large enough, we shall have

(5)

	

iU;-a I <Ek

	

(Mk<-<i-rv+l).

On account of (4),
Ek I

I smk+w+u 1-v+1 a < 2

As before, we can obtain a finite subsequence of unused terms
of {c n }, with t as large as we please, such that

(k ;-1)

	

(k+l)

	

r

	

Ek+1

	

r
(6)

	

cw,'-1 + . . . + cw+t < a

	

2._ __sm k +w+u -v+1

If we put

an,k+w :u+v+2 - Cw+1 , . . ., amk+w+u=-v-rt+l - C(wTt ) , Mk,l-mk+2U+U+'?J~ t+1,

(so that Mk < mk+I) and bear
(5) and (6) that

(7)

and that, if t is taken sufficiently large,

(8)

	

I or
k

I-6' I <

Moreover, on account of (6),
Ek+1

sn k+1 a I < 2

This completes the induction . The series

	

cc n is obviously a rearrangement of i a n :
n=1

	

n=1

and because of (5), (7), (8), and the fact that lim E k =O, we have lira

	

q.e.d.
k->r,

	

n--

An example of this case, in which lim a n $ 0, can be obtained from the example
n-

-given at the end of § 1 by inserting the terms + 1 and - 1 after each group of
negative terms :

1-11-2+1-1
the C1-sum of this series is evidently also 12 .

(k+1)

	

(k t 1)
Cw : 1 , Cw-, 2 ,

(k-1
Cw-t

in mind again the definition of a ;,, it is evident from

I6t-6 I<E k

	

(792.(.

	

tC-r-24-x,-7)=1=2`

1 • 1_-I-I-1_-3 T 3 4 4 4 -+1-1+ . . . :

PI, - 1)>
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3 . The next case to be considered is that in which (1), in addition to being
divergent and C,-summable to a, has the property that, if {a nk } is the subsequence
of non-zero terms of {a n }, then

(9)

	

lim ya k I =1
k-x flk

and

(10)

	

0<b<la,, k j

	

(k=0, 1, 2, . . .)

for some fixed constant 6 independent of k .
We shall show that, under these conditions, given an arbitrary real number

a' $ a, there exists a rearrangement of (1) whose C,-sum is a' . We may assume,
without loss of generality, that a < a' . For suppose that a' < a, so that --a< -a' .

x

The series ) (-a-„), which also satisfies (9) and (10), has the C1-sum -a 11, p . 8,
n=I

or 2, p. 476], and if a rearrangement, say

	

(-a,), of this series has the C,-sum
n=1

x
a, then the rearrangement L a„ of (1) has the C,-sum a' . We shall also as-

n-1
sume that

(11)

	

0 < a' - a < 6 .

We ;hall obbtain a rearrangement,.

	

of (1), whose C1 -sum is a', and which has

the property that, if {a . .
k!

is the subsequence of non-zero terms of grin ], then
Hill ?z ;,. , n;- =1 and 6 < Ia ;,-

k
(k =0, 1, 2, . . .), so that the analogues of conditions (9) and

(10) are satisfied by this rearrangement of (1). Consequently, the procedure for ob-
taining this rearrangement can be applied successively a finite number of times, if
necessary, so as to yield, finally, a rearrangement of (1) whose C 1 -sum is an arbitrary
a' > a (a' not necessarily satisfying (11)) . Thus (11), which at first appears to be a
serious restriction, entails no loss of generality either .

Since (1) is C,-summable, we have [1, p . 101, or 2, p . 484]

(12)

	

s, n =o (m)

and

(13)

The fact that
m

a,,, = o (m) .

the C,-sum of (1) is a is equivalent to the assertion that

1 .(14)

	

sk =a+o(1) .
m k = 1
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Suppose that t, n is a natural number (m=1, 2, 3, . . .) . Then (14) implies that

1

	

m+tm

	

/

	

tm

	

1 i ,n

	

1 n3
t m

	

1
/a ;-O (1)

	

8k= '1+

	

8k+ --

	

8k(
m+tm k=1

	

m

	

=1

	

mk=,n-1

I Ml

m,

1
= I1+ tm '

	

a+0(1) -}- 1 _18,n .', .k),\1

tm
8m sk - tm 6- {m'O(1)+tm-0(1)}- •

k=1

If {m/tm} is a bounded sequence, or if m/tm -* oc sufficiently slowly, then m . o (1) +

t,,, • o (1) -- o (tn, ), and hence

(15)

(1s)

CFor all sufficiently large values of h, and for every natural number i ~ 2 p,,, h I
(where [xi denotes the greatest integer in x), let v (h, i) be the number of terms

a;

	

(j
- P,21, -Ii, Pin h

that are negative, and set

t In
8m+k - tm U O (tm))

k=1

An immediate consequence of (12) is that if {m/tm } is a bounded sequence, or if
m/tm --c,o sufficiently slowly, then

(16 )

	

8n,+t m - O (tm) .

Now let {a,,ml be the subsequence of positive terms of {a n} . Since (1) is C 1 -
summable and divergent, {a,,} is an infinite sequence. Furthermore, we have

(17)

	

lim

	

'

	

1 .
m-oo Pm

For if (17) were false, there would be an infinite subsequence {p n, h } of {p} such
that, for some fixed constant c---0,

P ,nh+1 ; Pmh > 1 - i - C

Nh -= min v (h, i) .
1-[ 2 Pmh ]

(h = 1, 2, 3, . . .) .

r

	

cl-i, p,nh +2 } i, . .

	

L
(1+ /pmh +i
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Then relations (9) and (18) imply that

(19)

	

lira Nh = + ~ .
h-cc

Bearing in mind (10) and (18), we see that

and hence

It follows from (15), however, since {P rn5/ [ pme
]
l and lp , h/ ( 1 + -

bounded sequences, that

['2 '-hl
s

i=1

and

S P
.h

- S

	

c

	

>-V (/G, i)-6mh

	

[(l+ J ) 1~ mh]+s

pmh]

	

C(20)

	

i=1

	

s h

	

[(1 2) prnh~ ' ti)' [2 p

	

Nh

[2 pmhI
a + 0 (pmh)

\ i
< [Pmh])'

2

41

are

[2 pm h ~
C

	

)
S

	

2 P" h

	

} O(pmh ,
i=I

	

2) Pmh~ i i

so that
c
[> p »ihI
~
i=1 (SPill h

	

r/ 1 2)P
"I h]

i )

	

0 (pmh)

This, in view of (19), contradicts (20) . Therefore (17) must be true .
Because of (17), we can choose an infinite subsequence, of {pm }, such that,

as m--, q,n_ j/qm ->1 as slowly as desired; let us do this in such a way that the
following conditions are satisfied :

(21)

	

5Q n +1+SQ,n+2+
. . . +SQm 1 = (gm-tl - gni)'o

	

o(gm;-1---qm)

(this is (15) with t,, replaced by q,.1-q,,, and m- k replaced by qm + k) ;

(22)

	

SQm+1-0 (qm-,1 - qm)

(this is (16) with t,n replaced by qm+ i - q, .) ;

S v

	

gm11(23) lira m •

	

-= 0, if, for every m, v is an integer such that qm < v,,, < q,n+i
m-soc 2'm qm-,1 qm
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(this condition can be satisfied because, according to (12), as m-* oc,s./m-->0 at a
certain fixed rate) ;

(24)

	

lim -
,u_oo qm -1 qm ) 1 - q,n

(this condition can be satisfied because, according to (13), as in-k , a n, m- 0 at a
certain fixed rate) .

For every natural number m, consider the expression

(25)

and set [un,]=um . Because of (24), (11), (10), and the definition of the sequence {anm },
we have, for all sufficiently large values of m, say for m >_ m * , 1 < a ;,, < qn,--1 - q,n - 1,
and hence

(26)

aqm ,1 (7m;7.

aqm-1
(6 '--- a)-

qm+l -- q
um = (q,,; 1 _ qm)

aqm-1

1 - u n, < q,n,, .1 qm

	

1 .

It follows from (25), (24), and the definition of ?Gm, that

(27)

	

(urn --1) aqm-1 -(qm--1-q,n)(a'-a+o((Im-1-q,n) .

Now, for every m

	

, put

CGk= a,, (qn,-r1<k<qm+1-(um-1)), a,,,,,.;1-.m=a1'

alc=ah-1 (qm , 1 - (u n,-1 )Gk=qm+1)

(28)

and let ak=a k for every natural number k`qm • . Then :~ ac is obviously a rearrange-

went of (1), and we are going to show that the C 1 -sum of this rearrangement is a' .

According to (28), for every m > m* ,

m-1 Sq -1-(Sq,n--1-Sqm+2L . . .-Sq'n ._1 1)-Sgrn 7 1 (um-1)-'..-(um-1)agm,1

(29)

		

a-i-o(q,n-1-gm))+o(gm_ ;1-qm)-((q,, 1-qm)(o'-a)--0(gm . ;.1 qm))

= (qm-1 qm)'a'-0(q,n-1-qm) ;

the second equality is obtained by making use of (21) and (22), (23) with v m
=qm,1-(tam ;-1) (bearing in mind (26)), and (27) .



(31)

We have

(32)

Because of (29),

(33)

We shall now show that
n

(30)

	

~ 8 'k =n a'+o(n),
k=1

w
which immediately implies that the C1-sum of

	

a.k is a' . If n is a sufficiently large
k-1

natural number, then there exists an m >_ m * such that
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qm < n < qm+1 .

n

	

qm
rs k = I S

r
k + :~ sk -

k=1

	

k=1

	

k=qm '.-1

qm

	

qm*

	

" qm* 1

	

qrn*i-2

	

r
S'k

	

r

	

S,k=

	

sk +

	

s k +

	

sk -- . . . +

	

sk
k=1

	

k=1

	

k=

	

k=qm_1+1

	

k=q m 1-h1 -

m

o(gm) -r

	

((qk - qk 1) •(7'+o(qk-qk-1))
k=m*+1

= o (qm) + (qm - qm*) - a'+ o (qm - qm*)

=grn'a ' +o(qm)

=n •a'+o(n),

the third equality resulting from [2, p . 77, 4], and the last equality being a con-
sequence of (31) and the fact that q,,/q,,,-i-1 as m- oc . On account of (28), there
exists an integer r satisfying the relation

(34)

	

0 <_ r < u m + 1,

such that
n

(35)

	

8k=(Sgm -1 1- qm~2+"'+Sn-1)+Sn-r +ragm+l+
k =q ,n 1

If we make use of (14), (31), and the fact that q,/q1-,-l as

(36)

	

8Q n+1 +sqm+2 + . . . +. sn 1=o (n) ;

with the aid of (12), (34), (31), and (26), we obtain

(37)

	

8n- r =o (n),

m-oo, we see that
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and (34), (31), and (27) yield

(38)

	

raq . , 1 =o(n) .

Combining (35), (36), (37), and (38), it follows that

(39)

	

sk =o (n) .
k=4,n+1

Relation (30) is now a consequence of (32), (33), and (39), and if we bear in mind
(28), it is evident, finally, that the assertion following (11) is true .

An example of this case is the familiar series 1 -1 -1-1 + - , whose C1 -
sum is 2 .

§ 4. The case to be considered in this section, in contrast to those treated in
the foregoing sections, exhibits a departure from the Riemann rearrangement theorem .

We shall assume that (1) is divergent and C1 -summable, and satisfies the fol-

This entails no loss of generality . For if b is a real number, and the C 1 -sum of
a1 a2 + • + an + an 1 -i- • • • is a, then the C 1-sum of a1 + a2 -i- • • • -I- an + b + anF1 + • • •

is a {- b, and conversely [1, p . 102]. Hence, if the C 1 -sum of a 1 + a2 + + an + • • • is

a, then a rearrangement of this series is C 1-summable to a' if, and only if, a re-
arrangement of the series - a -H a 1 a 2 + • . . -1

a n -f- . . . is C1-summable to a' -- a, and
the addition of a single new term to our original series (1) does not invalidate (40)
or the, assumptions just preceding it .

We proceed to prove a series of lemmas .

Lemma 1. Let ti an be a rearrangement of (1) and have the C 1-sum x, so that
n=1

xER (cf . Definition 1 in

	

1), and let {an k } be the sequence of non-zero terms of {a ''} .

Then there exists an infinite subsequence, {nk, }, of {n k{ such that

(42)

	

lim 8;,k = a.

lo%w-ing condition:

For every C1-summable rearrangement, :E a 'n, of
n=1

(1), if {a 'n k
(40)

(41)

is the sequence of non-zero terms of

We shall also suppose that

{a,}, then
- nk=1lim - - > 1 .

k-oo nk

the C 1 -shin of (1) is 0 .
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Proof: According to (40), there exists a constant c> 1 such that lim (nk+l/nk)=c .
/c-0c0

Hence, there exists an infinite subsequence, {nki}, of {n,} such that lim (nki+1/nki)=c,
1-000

so that we may write

(43)

	

nki 11=nki (c+ei)

	

(1=1, 2, 3, . . .)>

where

(44)

	

lim ei = 0 .
1-000

It follows from the definition of the sequence {nk }, that a ;,, = 0 if nki < m < n ki l 1

Using this fact as well as (43), we see that

1(s1+S%+ . . . +Snk +Snk .+1+ . . . +Snk +1)-nki . i 1

	

7

	

7

	

7

r

	

r1

	

sl+ . . .+snk
,

	

uk .- 1 -nk .-1

	

Snk . :_.1

(c + ei )

	

nki

	

+

	

nki+1

	

(Snk')

	

nki + 1

Solving this equation for the snk in parentheses in the preceding line, and making
00

use of (43), (44), the fact that the C1 -sum of :E an is a, and (12), the relation (42)
n=1

is obtained .
00

Suppose that

	

bk is an infinite series, and bk ,, b k,, . . . , b kp (k, < k2 < . . . < kp ) is

h' -1

a finite subsequence of the sequence tb k } . Then we shall call b,,., b k ,

	

. bkp a
00

subsum of ~ bkk
k=1

a

Definition 2 . The number f3 is initially accessible by N' b k provided that, for every
k-1

e > 0 and every natural number n, there exists a subsum, b k, + b k , +

	

+ bk , of

	

bk
P

	

k=1

such that every b k (k -<_ n) is a term o f this subsum, and b k , -+- b k , + --- + bkr - f3 < e .

Definition 3 . The number f3 is terminally accessible by

	

bk provided that, for
k=1

every e > 0 and every natural number n, there exists a subsum, b k, + b k , +

	

+ bkp , o f

~ lbk such that no bk (k- n) is a term o f this subsum, and I bk , + bk , -f-

	

+ bk,, - / I < e .

Lemma 2 . If a c R, then a is initially accessible by (1) .

Proof: Let

	

ak have the C 1-sum a and be a rearrangement of (1) . According
k-=1

to Lemma 1, there exists an infinite subsequence {sk i } of the sequence {sk} of partial
sums of this rearrangement, such that lim sk i =a. Now let e > 0 and the natural1-000
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number n be given. For all sufficiently large values of i, I ski - a I < e. Moreover, since

ak is a rearrangement of (1), every ak (k < n) is a term of the partial sum ski ,k =1

provided that i is sufficiently large . The truth of Lemma 2 is now evident .

Lemma 3. If a is initially accessible by (1), then aER.

Proof : We shall employ an argument which is similar to, but simpler than, the
one used in § 2 . Let e be a positive number satisfying the relation e > I al - a I .

We define a rearrangement,

	

an, of (1), by means of induction, as follows : Put
n=1

m 1 =1, a ;n, = a l = a1 , so that si = a l = a1 and consequently I al - a I < e and 18' - a I < s .
Let j ->- 1, and suppose that the terms

(45)

	

ai, a2, . . , amt

	

(m, > 1)

have already been defined so as to constitute a finite subsequence of fan) such that

(46)

	

am'.-al < e and 1 s ;n'.-aI<
E

(note that these inequalities hold for j-1) . Since, by hypothesis, a is initially ac-
cessible by (1), there exists a subsum, call it of (1), such that, if n; is the
largest index possessed in (1) by any term of (45), then every ak (k-<-n;) is a term
of 57 1. 1 , and

e
(47)

	

aI< 1'

If there are any terms of Sj,1 which are not terms of (45), denote them by al-
a2 -'), a ;; -') . On account of (40) infinitely many terms of (1) are equal to zero .z

	

. . .,

Let zi '' , zz ') . . . . z„' ii ( w> 1) be a finite subsequence of terms, all of them equal
to zero, of {an}, not already singled out of the latter sequence in the course of this
induction. It is evident from the meaning of 6n , that, if w is chosen large enough,
and if we put

(r+1>
am i +1 = zi

then, because of (46),

(4S)

and, because of (47),

0+1)

	

1

	

_ ci+1)

	

'

	

_ ci+1)
am;+2 - z2 , . . ., amp+w-zw , am .+w+1 - a1 ,

(j+1)

	

v+1)
am;+w+2 _ a2 , . . . , amj+w+v =av ,

I6 -al< -

	

(m;Si :~ m;+w+v),



E
(49)

	

Ismj+w+v-xI <

Referring again to the meaning of
taken large enough, and if we put
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an,

(1+1)

	

'

	

(id-1)
a,n) .-w v

	

- Zw . .;-1, am-w~,v+2 - Zw+2, . . ., am

it is clear from (48) and (49) that, if t is

- (i+1)W -v-t - zw+t

and set my + w + v -f- t = m; , 1 , then, since u., >I, 1, we have mj . i > m1 , and

e(50)

	

I a -a.I < j

	

(my+w+vsism;+,),

I6»7;_1---xI<

and s 1 - a I < e/(j + 1) . This completes the induction. The series

	

un thus de-and
n=1

fined is obviously a rearrangement of (1), and it follows from (46), (48), (50), and
(51) that lim G( =a, q.e .d .

Lemma 4. I f a E R, then - a is terminally accessible by (1) .

Proof : Let e ,> 0 and the natural number n be given . By hypothesis and Lemma 2,
x N initially a ( «dill by (1). Hence, there is a subsum, S, of (1) such that every
a,, (k <_ n) is a term of S, and

(52)

	

IS-aI< 2 •

According to (41) and Lemma 2, 0 is initially accessible by (1) . Hence, there is a
subsum, T, of (1) such that every term of S is a term of T, at least one term of
T is not a term of 8, and

(53)

	

I T I < 2 .

Let U be the subsum of (1) consisting of those terms of T that are not terms of
S. Then

(54)

	

U=T-S,

no ac; ( k-< n) is a term of U, and (52), (53), and (54) imply that I U + a. I < c, which
means that - a is terminally accessible by (1), q.e .d .

Lemma 5 . I f x E R, then -- 2 a is terminally accessible b y (1) .
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Proof: Let e > 0 and the natural number n be given. According to Lemma 4,
there exists a subsum, S, of (1) such that no a,, (k< n) is a term of S, and

(55) IS+aI<Z •

Let n' denote the largest index possessed in (1) by any term of S . Then there
exists a subsum, T, of (1) such that no ak (k -< n') is a term of T, and

(56)

	

IT+aI< r- •

Let U be the subsum of (1) consisting of the terms of S and the terms of T. Then

(57)

	

U = S + T,

no ak (k< n) is a term of U . and (55), (56), and (57) imply that I U + 2 a I < e, which
means that -2 a is terminally accessible by (1), q .e .d .

Lemma 6. I f a c R, then - a is initially accessible by (1) .

Proof : Let r > 0 and the natural number n be given . By hypothesis and Lemma 2,
there exists a subsum, S, of (1) such that every ak (k - n) is a term of S, and

r
(58)

	

IS-al< 2

Let -n' denote the largest index possessed in (1) by any term of S. By Lemma 5,
there exists a subsum, T, of (1) such that no ak (k :5 n') is a term of T, and

(59)

	

IT-1-2,1< 28 -

Let U be the subsum of (1) consisting of the terms of S and the terms of T. Then

(57) holds, every ak (k < n) is a term of U, and (58), (59), and (57) imply that
I U - a

I
< r, which means that - a is initially accessible by (1), q .e .d .

An immediate consequence of Lemma 6 and Lemma 3 is

Corollary 1 . If a E R, then - a E R .

Lemma 7 . If /3 E R and y E R, then (3 + y E R .

Proof : According to Corollary 1, - /3 E R, and hence, by Lemma 4, /3 is termi-
nally accessible by (1) . On. account of Lemma 2, y is initially accessible by (1) .
An argument analogous to that used in the proof of Lemma 6 now shows that /3 + y

is initially accessible by (1), and then Lemma 3 implies that /3 +yER, q .e .d.
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Corollary 2. I f a E R, then m a E R (m = 0, + 1, ± 2, . . . ) .

Lemma 8. The set R is closed .

Proof: Let I be the set of numbers that are initially accessible by (1) . According
to Lemmas 2 and 3, R = I. Suppose that A is a limit point of I ; we have to show
that A E L Let e > 0 and the natural number n be given . Then there exists a number

,U CI such that

(60)

	

I ,cc - ti l <

There is a subsum, S, of (1) such that every a,, (k < n)

fi
2

From (60) and (61) it follows that 18-A I < s, and consequently ).El, q.e .d .
It is evident now from Corollary 2 and Lemma 8, that there are only three

possibilities :

(A) R = {0} ;
(B) R = {m a}m_~, ±1, ±2,

	

for some a ' 0 ;

(C) R is the set of real numbers .

We show, by means of examples, that each of these possibilities can actually
be realized .

Example A. Let

Since lim a„-'=0, (1) diverges .n-~x
Suppose that n _ 4 . Then there is a k > 1 such that 22k -<= n < 22k i i We have

6n = 1

	

22'-,

	

1 k-22k "-k -k-2 k
It j-1

and hence lien 6n=0, so that (41) holds .n--

Let , a, be a Ci summable rearrangement of (1) . Then there existsn-11

if n2Z
7- 2 2 k if n - 22 + 1

0

	

if n is any other natural number .

is a term of S, and

(k = 1, 2, 3, . . .)

finite subsequence, {n,}, of {n} such that
4-543808. Acta Mathematica . 92 . Imprimé le 29 décembre 1954 .
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(62)

	

a'= 0

	

(ni < j<_ 2 ni ; i = 1, 2, 3, . . .) .

For if this is not so, then, for every sufficiently large n, there is at least one j
satisfying n < j < 2 n and a'--t-O ; hence, for every sufficiently large k, there are at

least 2' values of j satisfying 22 k
< j < 22k 1 and a1 + 0 . There are precisely 2 k + 2

values of n satisfying 1 < n < 22k-1 + 1 and an =t= 0 . Consequently, for every sufficiently
large k, since 2k > 2 k + 2 . there is at least one Mk satisfying 2211 < m k <_ 22k+1 and

amk
I > 22k+2 k 2 which implies that

a'M,
I

	

22k+2 k -2
22k-}1 -k-2

Mk -

	

22k+1

so that lim I a nk I/M' = c, contradicting the fact that n1 a n is C1-summable (cf. (13)) .

An immediate consequence of (62) is that (40) holds .
Suppose that there are infinitely many values of i such that .sni = 0 (throughout

the rest of this paragraph, let i represent only these values) . Then, because of (62),
we have also s ; =0 (ni < j <_ 2 ni ) . Hence,

r

	

r

	

r

	

r

	

r

	

r
81 ;-52+ . . .+8ni

	

sl+S2T . . . +sni + 0
6 = lim - .	. = lim -

	

-- 2 6 ' ,iw

	

ni

so that a'= 0 .
Suppose, however, that sn i r 0 for every sufficiently large value of i . Then there

is a largest value of k, call it k i , such that one of the terms a' (V< j <'ni) is either

equal to 22k ki or to - 22A"-k, i, but none of these terms is equal to - 22k` - k i, 22k -k ,

respectively . Since

	

an is a rearrangement of (1), lim k i =~~ . -ow
n I

I stt i I

large i,

(63)

2
ki -1
'5' 221 7-2' 2
7=1
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i~co

	

2 a,

- (ki - 1) 2
2k -1k

i+ 1 =

which implies that lim Is',, I = ~ . Assume that a' r 0 . Then, for every sufficientlyi- -

IsniI>2I61 .

I--

= 2 a' + 2 "M s ni ,
1--

Because of (62), we have s, _

	

(-ni < j < 2 n i ; i = 1, 2, 3, . . .) . Hence,

8, + 82' + . . . + S'

	

s1 + s2 .L. . . . + sni .~- ni sn i
6' = huh

	

= hrn
i-x

	

ni

	

i-o

	

2 ni

k i -1 (22k 1 1 -ki +1),



and consequently

for every i E I', and hence
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Sni 1 +41 .-

which contradicts (63) . Therefore we must have a'=0 .
Thus we see that R = {0} .

Example B. Let
22k k

	

if it =2 2k

i --2 2'` - k -1 if n=22k ± 1

	

(k=1, 2, 3, . . .)
nn =

1

	

if it =2 2k +2

0

	

if n is any other natural number .

Then it is obvious that (1) diverges .
Suppose that a 4. Then there is a k 1 such that 22k< ( 22k ' 1 . We have

k

and an argument analogous to one employed in connection with Example A now
shows that lim a,= 0, so that (41) holds .

n-~ oo
r

,,

	

1'(a ~' ;- . iunnittl lr rearranement of (1) . Then there exists an infinite
1

subsequence,

	

t of {n} such that

(64)

	

either a; - 0 or a;=1

	

(ni<j<16 )i i ; i=1, 2 . 3, . . .) .

The proof of this is analogous to the proof of the existence, for Example A, of the
sequence {rr i ; satisfying (62), and will therefore be omitted . A consequence of (64) is

(65)

	

Sn i =sn i+1=

	

=S1Gni

	

(i =1 > 2, 3, . . .) .

Suppose that for every sufficiently large i and for every k satisfying ni < k =_ 8 )?.i,

there is at least one j satisfying k < j < 2 k and a; =1 . Let a' be the C 1-sum of
L a n . Then there are two possibilities : either s2 „

	

1 for every sufficiently large
n=1

i, or else there is an infinite set, I', of natural numbers such that s , ' a' - I for
every i EI' . If the second alternative holds, then, in view of (65),

<ni(a' - 1)
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sl± . . .+.sni-Fsn1-<+ . . .+.s2
a ' _= lim -,~~

	

2 n,
7E1,

which is absurd . If the first alternative holds, then, according to the first sentence
of this paragraph, s ' „_ > a' and s8 „

	

' I- 1 for every sufficiently large i, so that, in

view of (65), sg,7i _ -sg,7i-12

	

+slc n z > 8 ny (a ' + 1), and hence

sl+ . . .

	

88771 -{ s877i+1+

	

~ s18ni

	

r
>

	

2>a--,

	

16 n i

which is also absurd . The initial supposition in this paragraph must therefore be
false . Consequently, there exists an infinite set, I", of natural numbers such that,
for every i EI", there is an m , satisfying n j < m, < 8 n 1 , for which

(66)

	

a;==0

	

(m <9-

	

ICI - )

An immediate consequence of (66) is that (40) holds .
According to Lemma 1, there exists an infinite subsequence, {n;}, of {n} such

that lim s;7 •_ =a' . Since sn is an integer for every n, a' must also be an integer .

This means that every number belonging to the rearrangement set of (1) is an
integer .

Conversely, if v is an integer, then v E R. We have already seen that 0 E R.

Suppose, then, that v>0 . Let an =1 (1<n<v) and a n' =a, (n=v+1, v+2, v+3, . . .) .

The series ~a. n thus defined is a rearrangement of (1) . because infinitely many terms
L

r.- 1
of (1) are equal to 1, and, according to the second sentence following (41), the C1 -

sum of this rearrangement is v . Similarly, if v<0, the series obtained from (1) by

simply deleting the terms a n (n = 22k + 2, k = 1, 2,

	

	is a rearrangement of (1),

and the C1 -sum of this rearrangement is v .
Thus we see that R is the set of integers .

Example C. Let
2 2'''° -1 (2k-1)

	

if n-222k-1

222k-1-(2k-1) --1

	

if n=222k-1 +1

1

	

if n=2
22k-1

+2

an

	

222 k -2 k

	

if n=222k=-

	

(k=1, 2, 3, . . .)
2 2 k--2k -

	

= 22k2

	

V2

	

if n2

	

1

y 2

	

if n=2
22k

+2

0

	

if n is any other natural number .



Then arguments analogous to ones employed in connection with Example B show
that (40) and (41) hold (and (1) is obviously divergent), and that the rearrangement

set of (1) contains every number of the form ,u+v12, where t and v are integers .
It is well known that the set of all such numbers is everywhere dense in the set
of real numbers, and from this fact and Lemma 8, it follows that R is the set of
real numbers .

§ 5. Let us return to our original question . Suppose that (1) is C1 -summable ;
what is the nature of its rearrangement set R?

If (1) is convergent, the answer is given in § 1 . Suppose that (1) is divergent .
If 0 is not a limit point of the sequence {am}, then our question is answered in
§ 3 . Assume that 0 is a limit point of {a,,,} . If, for every s > 0, there is a non-zero
limit point of {a,,,} in the interval (--e, e), then, as is easily seen, this case can be
reduced to the one treated in § 2 . If, however, there exists an 8>0 such that 0 is
the only limit point of {a in the interval (-r, r), then the terms of (1) in this
interval form an infinite subsequence, {a,,, k }, of {a such that lim a, k =- 0 . Now there

are two possibilities : either S' I a mk I diverges or it converges . If it diverges, we have
k-i

the case discussed in § 2 . Suppose, however, that it converges . Let «,,,k=7. If
k-I

the C1-sum of (1) is a, then the C1-sum of the series obtained from (1) by setting
a,,, k =0 (k=1, 2, 3, . . .) exists and is equal to or-a, and conversely. (This is very
case to prove if one considers, in addition to the series already mentioned, the series
obtained from (1) by setting a 1 =0 (i km k ; k=1, 2, 3, . . .), and makes use of the fact
that C1-summable series may be added and subtracted term by term .) Hence, there
is no loss of generality in assuming that a,,, k =0 (k- 1, 2, 3, . . .) . This means that

sif we put d=

	

and if {a„k } is the subsequence of non-zero terms of {an}, then

a„ k I > 6 (k = 1, 2, 3, . . . ) . If lira Ilk_ I/nk =1, then we have the case considered in

§ 3 . If, however, this limit is not equal to 1, the discussion in § 4 applies .
Thus it is evident that the assertion made in the second paragraph of § 1 is true .

[1] .
[2] .

[3].
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