P. Erdos

On the uniform but not absolute
convergence of power series with gaps

EXTRAIT
DES »ANNALES DE LA SOCIETE POLONAISE DE MATHEMATIQUE:
T. XXV, ANNEE 1952

KRAKOW 1952

POLSKIE TOWARZYSTWO MATEMATYCZNE
UL, 8W., JANA 22



ON THE UNIFORM BUT NOT ABSOLUTE
CONVERGENCE OF POWER SERIES WITH GAPS

By P. Erpos (London)
Hardy!) was the first to give an example of a power

©0
series 3 ap2"¢ which converges uniformly in |z{ <1 but for
=1

oo

which Y |ax| =oco. Piranian asked me (in a letter) for what
k=1

sequences of integers n,<m,<... does there exist a power

0
series Y azz" which converges uniformly in |2| <1 but for
k=1

which 3 |ag| diverges. In the present paper I shall prove the
F=1
following

Theorem 1. Lei n,<n,<... be a sequence of integers satisfying

=]
lim inf nlk=1. Then there exists a power series > apz™ which
k=1

o0
converges uniformly in |z| <1 but for which 3 |ag]=oco.
: =1

The condition lim inf n}*=1 can certainly not be weakened

a great deal. In fact Zygmund 2) proved that if ng/ap>e¢>1,

and if 3 axz™ converges for all |2|=1 then §|ak1<oo. On the
=

=i
other hand both Piranian and I observed that lim inf n}/k=1

is not a necessary condition. In fact I shall prove that the
following somewhat stronger result holds:

1) E. Landau, Neuere Ergebnisse der Funktionentheorie, p. G8.
#) Studia Math. 3 (1931), p. 77-91.
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Theorem 2. Let n,< n, <... satisfy

(1) lim inf (r;—nW—1=1, where j—4 - co.
oo

Then there exists a power series ) ayz"k which converges uni-
=1

formly for |z]=1 but E[ak|=oo.
E=1

It is clear that Theorem 2 is stronger than Theorem 1,
since if liminf n{=1 holds then lim inf (n;— n,)¥/~=1 also
holds (put ny=mn, and let j— oo).

It is not impossible that (1) is the necessary and sufficient

oo
condition for the existence of a power series } apz™ which
k=1

oo
converges uniformly for |z{<1 but J|ay|=co.
=1

We will prove Theorem 2 since the proof of Theorem 1 is
not easier. The proof will use methods of probability theory
and for this reason I am glad that the paper appears in a volume
dedicated to Professor Steinhaus who has contributed so
muech to this subjeet.

It easily follows from (1) that there exists a sequence of
indices satisfying

G W . 5 4 _ Y N o
?
(2) 4 <f1 <Py <Jp<..., B<my—mny <exp(ji—42'), jr—i1=24,—1,

exp z denoting ¢*. The condition that j;—i; is odd is assumed
only to make some of the later computations simpler. From (2)
we have

(3) 24&11 =?}—“§:;+1-..<,__ﬂk—ﬂjl+].<2(%}1—"?‘311).
Further by (2)
(4) j]“—‘i'f> 2f or A;>2I_1.

Define a=0 if k£ is not in any of the intervals (% 7)),
1=1,2,..., and ax=(A4y)"" if ;<k<j;. Denote by ryt) the
k-th Rademacher function.

Ji oo ]
We have J ax=1/l hence } ap=23 1/l=o00. Therefore Theo-
=i =" =

rem 2 follows from
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Theorem 3. For almost all ¢
1) =3 ralt)agsms
k=1"
converges uniformly for |z|<1.
In other words #f e=-1 and the &8 are independent

oo
of each other, then Y ca,2™ converges uniformly for almost
k=1

[=.=]
all choices of the e-3 (since 3 ap—oco Theorem 3 includes
k=

Theorem 2).
To prove Theorem 3 we need a few lemmas. First of all put
jJ Rp—H; '” ng—n
(5) 6P0(2) = ra(t)z ¥ =Y ez
=i k=i
By (5)

fiz) =23 2" 6P(2)[214,.
=1

The degree of QP(z) is nj,—ny and it has 24, terms.
Lemma 1. Suppose 0<b; <1, and let &,&y,...,6m take on
the values 41 in all possible ways (thus there are 2™ possible

choices for the e-s). Denote by g(m,r) the number of choices of
the &8 for which

(6) |§e, bl <m—2r41 (if r>m/2, gim,r)=0)
(min g(m,r) denotes the smallest possible value of g(m,r)). Then
(7) mmg(m,’r)=(T)-]—(.r_}_l)ﬁ—...—{—( e

The Lemma means that g¢(m,r) is minimal if b =1,
i=1,2,...,m.

The lemma and its proof are due to Szekeres’). We use
induction for m and r. We can assume without loss of gene-
rality that b,<b,<...<bm=1 (for if bn<1, we replace b, by
bi/bm, t=1,2,...,m, and g(m,r) is clearly not increased). If

m—1
| 28; b;l{ ?n—z?+1
i=1

3) Written communication.




[
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and g, =-+1 we obtain

m—1

(8) —(m-—.!r—}—2)<|2c,b;|<m—3:
=1
If ¢y =—1 then
m—1
(9) —(m—2r) <| Y e bi| <m—2r+2.
=1

From (8) and (9) we obtain that
(10) min g(m,r)=>min [g(m—1, r)] 4+ min [g(m—1, r—1)].

Lemma 1 clearly holds for *=0 and any m, also it holds
for m=1 and any #. Thus by (10) and a simple induction
argument it holds for all m and r, which proves Lemma 1.

Lemma 2. Let 2,,2,,...,20, be 2m complew numbers, |z]=1,
i=1,2,...,m. Then the nuwber of choices of the e-s for which

|3 evf> (28 +1))2

is less than
8m + 2¥™ exp (—s2/2m.).

Put z;=a; +1ib;. If

2m

|y g 2| = (2s +l}V§
=1
then either

]2&,&;]; s+1 or IZ.‘!’)}! 2511,

By lemma 1 the number of solutions of

IZ Ej a.fl 2s+1
is less than or equal to
o2m_ _ _om 2m )_ _( 2m ) _
2 min [g(2m, m—s)]=2 (m-*s A mts

ni—s=—1 5 -

=m Zm
2 i m—S§
i=1

Zm) m(m—1)...(m—s—+1)
(m+1)(m+-2)...(m+3)

(11)

I

o

&
) -_
<4 - 22”’[](1—— ﬁm—l)g 4m - 2¥™ exp (— s2/2m).
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Similarly the number of solutions in the &-s of

gby| =281
;

Thag

satisfies (11), which proves Lemma 2.
Lemma 3. For 1>,

Prnb[max|@ (@) > (24 +1) Y21+ 7)< 1/2

In other words the measure in ¢ of the set for which

max 109(2)| > (24, + D) V2/14 =

z|=1

is less than 1/2°. Or in still other words: The number of choices
of ¢,¢,,...,e24, for which

RE—

{12) max |Qw(z}|_mlx |Z£* * ]> 4, +1)2/i+ =
|z]= |

z|=1 k=ij
{
is less than 2 e

Put
£, = exp [2mrif(n,— ny)?, 1<r<(n,— ny)

Thus & runs through the (nj—ng)*th roots of unity. }”(ér) is
24,

of the form J} e 2, |2|=1. Thus lemma 2 can be applied and
=1

we obtain from Lemma 2 on putting 4,=m, s=4,/l that
the number of choices of the e-s for which

Q&) > (24, +1) )21
is less than
24

(13) 14,2 exp (—A/28).
Therefore for I >1, by (12), (2), (3) and (4) the number of s

for which

(14) max _|QP(&)|> (24, +1) )2
1<r iy my*
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1s less than
LA 2% (ny—ny)? exp(—A,/217) <
(15) < 21, —n,)3 exp (—A4,/28) <
<221 oxp (34,/2"" ) exp(—A4,/212) < 221 % exp (— 4, j412) < 2*47,
In the last two inequalities of (15) we used the facts that for
1>1, 3/2%'<1/42, and that for I >1, by (4)
A;> 27 >4 (14 2).

Now let 2, be any point on the circumference of the unit
cirele. Clearly

16 min 2o—E | <m/(ms,—my )2,
'( ) 1<l"<(ﬂ};+l'lf’)’| (1] rl .l'( J1 iy
Further
Hi
1) max |(@(2))'| < 3 (na—ny) < (nj—ng)?.
|z]=1 ke=1y

From (16) and (17) we see that if
max Q&) <(24,+1))2/1
1<r g —my)*
then

(18) Imla-x 199 ()| <(24:+1) )21+ =.
=1

The formnulae (15) and (18) imply that the number of
choices of the e-s for which (12) is not satisfied is less than
2% which proves Lemma 3.

Now we can prove Theorem 3. Since Y 1/2'< oo it follows
from Lemma 3 and the Borel-Cantelli lemma that for almost
all ¢

(19) max Qi ()| <(24,+1)V2/1+=
|z]l=1

except possibly for a finite number of I-s (these I-s of course
may depend on t). Let #, be any real number for which (19)
is false for only a finite number of I-s, and let I,=1,(t) be such
that (19) holds for I >1,(¢). We shall prove that f,(z) converges
uniformly for |z| <1.
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Let k> wny, assume that ng<k<n;. We shall show
that for lz] <1

wﬂ g 8
(20) !‘% ralty) ar ’ <7

(20) clearly implies the uniform convergence of f,(z).
We evidently have for |z| <1

o0 - nf; co
@) | Srttas | < 3 Indto)l et 3 109 (2]
k=k, k=k, 1=A+41

But (19) holds for I=>1;; hence from (21) and the definition
of ax and fi(2)

g
‘ 2 Ta(ty) ar2

b=k, I=a+1

1, yfedrnlz, =
gITZ'( 2A113_+'.’,£A;)'

But by (4) 4,>2"Y Thus

. ;
| St | <1418 Sp 4 3w <]

k=k, 1>2 2~ >4

A

Thus Theorem 3 and therefore Theorems 1 and 2 are proved.

This method ean also be applied to entire functions. We
can prove the following

Theorem 4. Put
Jdz) =3 ra(t) 24k
k___o
Then for r=1y4(t) and almost all 1
er ,
MA(fe) < ?Th(log )% [ MAf)= Imlzx [72)}]
and for a sequence ry— oo and almost all t
My, (f2)) > o, (log r)e,

where 0<ey<e, are suitable constants.
We do not give the details of the proof.
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