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ON THE UNIFORM BUT NOT ABSOLUTE 

CONVERGENCE OF POWER SERIES WlTH GAPS 

By P. ERDW (Lomion) 

Hardy 1) was the first to give an example of a power 

series fak ~2% which converges uniformly in (NN~ <l but for 
k=l 

which & ak 1 = 03. Piranian asked me (in a let’ter) for what 

sequences of integers n, < n2< . . . does there exist a power 

Series fakank which converges uniformly in 12’1 < 1 but for 
k=1 

00 
which 2 1 a,k 1 diverges. In the present pamper I shall prove the 

k=l 

following 

Theorem 1. Let n, < ,nn2 < . . . be a sequence of integers satisfy.ing 

liminf ntjk=l. Them there e&&s a power series fa,kPk which 
k=l 

cowoerges wnifownly in lx 1 < 1 bwt f?r which *j I akj = 00. 

The condition lim inf v#h= 1 can certainly not be weakened 
a great deal. In fact Zygmund 2, proved that if n&+&%k>c >1, 

and if Aakz% converges for all 1 xl =l then ,iL 1 ak\ -C CO. On the 

other ha’nd both Piranian and I observed that lim inf nLjL=l 
is not a necessary conditSion. In fact. I shall prove that the. 
following somewhat stronger result holds: 

I) E. Landau, Neuere Ergebnisse der J;‘u,lktiotle?ztneorie, p. OS. 
p) Studia Math. 3 (1931), p. 77-91. 
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Theorem 2. L~et nn, < 92, -z . . . satisfy 

(1) lim inf (ni-- nr) llj-t=l, where j--i-+00. 

!i!‘hen there eaists a power series 2 ak@k which converge8 mi- 
k---l 

forwaly for 1x1=1 but&x~]=cm. 

It is clear Ohat Theorem 2 is stronger than Theorem 1, 
since if lim inf nilh= 1 holds then lim inf (nf - IZ#-+‘= 1 also 
holds (put al=fin, snd let j+oo). 

It is not impossible that (1) is the necessary and sufficient 

condition for the existence of a power series takz”n which 
k=l 

converges uniformly for 1~1 <l butsylakl = 00. 

We will prove Theorem 2 since the proof of Theorem 1 is 
not easier. The proof will use methods of probability theory 
and for this reason I am glad Ohat t’he paper appears in a volume 
dedicated to Professor S t ei n h au s who has contributed so 
much to this subject. 

It ea,silg follows from (1) that there exists a sequence of 
indices satisfying 

(2) il<jl<ia<jz<..., 3(r121-“n<exp(jr-il/2’), j+l=2Al--1, 

exp x denoting G=. The condition that j+-il is odd is assumed 
only to make some of the later computations simpler. From (2) 
we have 

(3) 28, = jl-il+l~nn,,--~~~l<2(n~~-~,,). 

Further by (2) 

(4) i2 ---if> 2’ or A1>2’-1. 

Define ah=0 if k is not in a’ny of the intervals (ir, jr)? 
1=1,2,..., and ah =(I&)-’ if il<‘k<jl. Denote by r&(t) the 
k-th Rademacher function. 

We havedlak =1/I hence ~~a~=~~1/1=co. Therefore Theo- 

rem 2 follows from 



Theorem 3. Par almost aZZ t 

cowerye miformZy for 1x1 a. 

In other words if Ed = +l and the c-8 are independent 

of each other, then jj&kakPk converges uniformly for almost 
k-1 

all choices of the E-S (since ,$a,-CO Theorem 3 includes 
k=l 

Theorem 2). 

To prove Theorem 3 we need a few lemmas. First of all put 

BY (5) 
j ‘2) =z d’l 6’“( t\ t z )/2ZA 

I=1 
I’ 

The degree of &$‘)(x) is +iil --‘?bfl and it has 2A1 terms. 

Lemma 1. Suppose 0 < br<l, amd let Q, Ed, . . . ,E,,, take OIC 
the values &l in. all possible ways (thus there are 2* possible 
choices for the E-S). Delzote by g(m,r) the ~uwtber of choices of 

ihe E-S for which 

(6) &bi[<nz-2ar+l (if r>%qa, g(m,r)=O) 
i=l 

(min g(m,r) denotes the smallest possible ua’lue of g(m,r)). Then 

The Lemma means that’ g(m,r) is minimaCl if br=l, 
i=1,2 ,..‘, m. 

The lemma and its proof are due to Szekeres3). We use 
induction for m and Y. We can assume without loss of gene- 
rality that b,<b,<... , <b,=l (for if b,cl, we replace bl by 
bilbrn 7 i=l,2,..., q and g(m,v) is clearly not increased). If 

I*281 b,l< m -2r+ 1 
i=l 

3, Written communication. 
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and E~ =+l we obtain 
m-1 

(8) 
--(m--‘“r+2)<l~,Eibil<pn-23r. 

If e, =-1 then 
m-l 

19) - (Wh-2Y) < 12 Ei bj( < ‘1Y1-2?‘+ 2. 
i=l 

From (8) and (9) we obtain that. 

(10) min g(m,r)>min [g(mi-1, T)] + min [g(m-1, r-l)]. 

Lemma 1 clearly holds for r= 0 and any SX, also it holds 
for m=l and any VS. Thus by (10) and a simple induction 
argument it holds for a’ll m and r, which proves Lemma 1. 

Lemma 2. Let 2;,x,,...,z2, be 2m comples numbers, Ixif=l, 
i=l,2,..., m. !i”hen the wwuber of choices of the 8-s for Which 

Ii&&w~+lm 

is less than 
8m l 22m exp (-@/~wA). 

Put xj=aj+ibj. If 

IzEj 2jj > (2s $1) v5 

then either 

is less than or equal to 

22m- min [g( 2m, nk-s)] =22m- (Zs)-...- (Zl;“,) = 
m-s-l 

111) 

=“Z (“7) < 4!q+J = 

=4Wh 
m(m-1) . ..(m-s+l) 

(m+l)(m+2)...(m+s)< 
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Similarly the number of solutions in the E-S of 

Satisfies (Xl), which proves Lemma 2. 

Lemma 3. POT E>Z, 

In other words the measure in t of the set’ for which 

is less than l/2’. Or in still ot,her words: The number of choices 
of E~,.Q, .., ,E~A, for which 

is less than 2 
%-I 

. 

Put 
tp = exp [9Xri/(?ZjI- Wi,)“, l<I”<(%j,-- V+)‘. 

Thus lF runs through the ( n;li- n#-th roots of unity. @(EJ is 
281 

of the form 2 E; x1, lql=l. Thus lemma 2 can be applied and 
I=1 

we obtain from Lemma 2 on putting A,=w, s =A$ that 
-the number of choices of the E-S for which 

is less than 

113) 4,41- 2 
a Al 

exp (-AJ2P). 

Therefore for Z>Z, by (If?), (Q), (3) and (4) the number of E-S 
for which 

04) 
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is less than 

wi) < 22A~+2(n,l- nf1)3 exp (-AJ212) < 

<22Al+2 exp (3A&‘) exp(-A1/2P)< 22”l+2exp (-Al/4P) ~2~‘@. 

In the last two inequalities of (15) we used the facts that for 

2 >I, 3/2&l< l/41?, and Ohat for Z >E, by (4) 

AZ> 2”‘>48(2+2). 

NOW let 8, be any point on the circumference of the unit 
circle. Clearly 

(16) 

FurOher 

(17) 

From (16) a’nd (17) we see that if 

then 

The formulae (15) and (18) imply that’ the number of 
choices of the E-S for which (12) is not satisfied is less than 
22A”, which proves Lemma 3. 

Now we can prove Theorem 3, Since z l/2’< 00 it follows 
from Lemma 3 and the Borel-Cantelli lemma that for almost 
all t 

(19) EE lC?:@,I <(2Al+l) k@+, 

except possibly for a finite number of Z-s (these Z-s of course 
may depend on 8). Let t, be any real number for which (19) 
is false for only a finite number of Z-s, and let Z,=Zt(t) be such 
that (19) holds for Z > II(t). We shall prove that f&z) converges 
uniformly for 1x1 <l. 



(20) clearly implies the uniform convergence of f&z). 

We evidently have for lzl<l 

But (19) holds for 1. >Z,; hence from (21) and the definition 
of a.~ and ft,(x) 

But by (4) Al > 2”l’. Thus 

Thus Theorem 3 and tSherefore Theorems 1 and 2 a#re proved. 

This met’hod can also be applied to entire functions. We 
can prove the following 

Theorem 4. Put 
co 

ftb) =z rk@) ah/k ! 
k=O 

Then for r > ro(t) avail almost all t 

JfAff) -=z $ (log rp tIJfr(ft) = p=$ M)\l 
2 r 

and for a sequmce T,+ 00 and almost all t 

JLn (ftls’)) > $& (log @) 

where 0 c cz< c, are suitable constants. 
We do not gire the details of t’he proof. 
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