ON A TAUBERIAN THEOREM FOR EULER SUMMABILITY

by
P. ERDOS

Let Za, be an infinite series. Put

o=y B2) ) W

Za, 1is said to be the Euler sum of Za,.Y It is easy to see that Za,
converges if ¥a, converges, but the converse is not true. Euler summa-
bility was first studied by Knopp.?

W. Meyer-Konig proved® that if £ g, is Euler summable and a» =0
except if n=n;, n,,/n, >c>1, then Za, is convergent. He also conjec-
tured that the conclusion of the theorem would follow from the following
weaker condition: a.=0 except if n=n;, where m ., —nm >cn', ¢>0
any constant. In fact he proved? this conjecture under the further assumption
that | a. | < n® where « is any constant. It is easy to see that this conjec-
ture if true is best possible i. e. if f(n) tends to infinity arbilrarily slowly
there exists a series Zw, which is Euler summable but not convergent and
for which an=0 except if w=n;, n i —n; >n"/f(n).

1) (1) gives a series to series transformation method. The corresponding sequence to

sequence method would be
1 L
Sn':’:—ll(z( )Sk)'
2r| + P k

The two methods are equivalent, but for our present purpose the series to series transfor-
mation seems to be more suitable,

2) Math. Zeitschrift 15 (1922), p. 226—253 and 18 (1923) p. 125—156.
%) Math. Zeitschrift 49 (1948), p. 151—160.
4) Math, Zeitschrift 45 (1939), p. 479 - 494,
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In the present note we are going to prove the following

Theorem. There exists a constant A >0 so that if Za, is a series
which is Euler summable, and for which an=0 except if n=n;

Ny —n > Anfh, 2)
then an is convergent.
At present I am unable to decide whether A can be any constant
greater than 0, in other words I am unable to prove Meyer-Konig's
conjecture,

Let fg}amﬂ““ be the summand of greatest absolute value in (1). If
there are several such terms we consider the one with the greatest index

m. Put m=f(n), F(n)= H;) G /2"

Lemma 1. f(n) is a non-decreasing function of n.
To prove lemma 1 it will clearly suffice to show that if

EEEE
oo 7)o (o)

n+1 n+1
——T%
n-m+1 n—i{+1

for m> 1, then Hn;}-l]am‘> (nj-—l]a;‘.

for m > 1.

Lemma 2, Assume that f(n) > n/2. Then F(n+1) > F(n).

|
Put f(ny=m > n/2. We obtain from F (n+1) > 2,,1. [n ;l] am‘
n n+1
. SN

+2

F o+ 1)/F () > (”; 1]/2 [

which proves the lemma.

Lemma 3. Let o be arbitrary. Assume that |a.| <n* for all n, and
an=0 except if n=n;, 7,4 —n; > cnz, where ¢ >0 is an arbifrary posi-
tive constant. Then if £an is Euler summable it is convergent.

This is a theorem of Meyer-Konig.?
Because of lemma 3 we can now assume that, for infinitely many
n, |an|>n. We shall show that if an infinite series satisfies (2) and

#) Math, Zeitschrift 45 (1939), p. 479—494.
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|a,| > n for infinitely many n then it cannot be Euler summable. This
together with lemma 3 will complete the proof of our theorem. First
we prove

Lemma 4. Let ¢, >0 be suitable constant. Then there exist infinitely
many integers n saftisfying

12 f(@)=f(n+1)=--=f(a+9), ¢>§.n*fa ®)
and
F() >, Fln+1)>con™, ..., Fa+H> ¢ n™. @

First of all it is easy to see that there exist infinitely many integers
n; satisfying

|ani|>nf, |ak||<|a“i.| forlgk<n,-. (5)

To prove (5) it suffices to choose |a,|>n and define an, as the a, of
largest absolute value for 1<Ci<n.
Put

; 1 2-‘1[ .Qﬂj
Gon; = 2m1+1k20( & )ﬂk-

By the second inequality of (5) we have f(2n)>n;, and by the first
inequality of (5) for sufficiently large n;

F (2 ﬁ;) > |[ (2;1‘.) ﬂnt X22ni+1 ‘r > i (2:; )/gzni-i—i 5 By nl‘hl (6)
i i

Assume first that for infinitely many n satisfying (5) we have f(2nr)==;.
From lemma 1 we have for x >0

f@mi-x) fRnr)=m;. {7)
Further, a simple argument shows that for f<{n;—n_, and j >1
=~ (201
) ] . 8
( L )>( iy ) &
Therefore by the second inequality of (5)
2n; -t Il ({2 -1 |
G R (i LS ®

(7) and (9) imply that for 0P mi—ni
f@Rn-H=f2n)=n;. (10)
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A simple computation gives that for < Ar:;"”t

(2n;—t)>cs(2n?;)/2f_ (11)

n;

Therefore from (2)® (6) and (11) we have for {< An"
1 2n; -t 2 +1/2n
F(2n.--t)>-23n[_—_m( 4 )|a,,‘|>c,/2 i (nt1)|a,.l.r>
(12)

> cpcanth>1
(10) and (12) prove our lemma.

Assume next that for all sufficiently large n; satisfying (5) we have
f@n)>n. Put m=ny, f2n)=n,, f(2n,)=n;, ... There thus exists
an infinite sequence Bigs Mtgs s o - satisfying

A, <y <oy 2m, 2=m o fRR )= (13)

To simplify the notation we shall write n, instead of n;,, whenever there
is no danger of confusion. First of all we show that all the n, satisiy (5).
We use induction. By assumption n, satisfies (5). Assume that n, satisfied
(5). A simple computation gives for sufficiently large A

2n 2n, 1/2n,

() <o 2t ) <2 (e )
r 2n, 2n,
(nr+1)anr+1 ( e )aﬂr

|@n, | >2|an, >2n >np 44

Thus
=

implies

which is the first inequality of (8). Further since the binomial coefficients

(HQ-!:_:!) decrease as [ increases, it follows from f(2n,)=n, ., that
A

|an,+1|>;an| for n,<n<my g,
But then since n, satisfied the first inequality of (5) it clearly follows

that n,,, also satisfied il, which completes our proof.
Next we prove that for all » >2n,

F(r)>c n™. (14)
5) This is the only place where our assumption that A is sufficiently large is
essential.
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From (13) and lemma 1 it follows that for n > 2n,, f(7) > n/2. Hence
we have from lemma 2 that for n >2n, F(n) is an increasing function
of n. Let

2, n<22n . < 4n,.

Since n, satisties (5) we have

2n,
>' ( a, )an |

Consider now the interval 2ufu <ng 4n, Clearly n; < f(n) <4m,
Also f(n) must be one of the n;/s. But by (2) the difference of two conse-

cutive n/'s is greater than An; %, (n;>n;). Thus the number of /s in
the interval (n, ) 4r1,) is less than 3n, ”/A Hence there must be at least

2n; |(3m; jA) = -%4- m "

F(n) > F@2n,) o e, 0 q.e. d.

integers in the interval (i, 4n;) with the same f(n) and by Lemma 1
they must be consecutive integers say n, n+1,...n+¢ t> A/3n"%. Thus
(14) completes the proof of Lemma 4.

Now we can prove our theorem. Let n satisfy lemma 4 and choose
A A 2n+1 1 MM
t=|—n"[+1. Put =M. We have a'py=— a
_ [3 ] [ 2 ] o= e 23 )

We shall show that [a'M > ¢y M"Y where ¢, is an absolute constant inde-
pendent of n. This will of course show that Za’, can not converge, hence
®aen was not Euler summable and the proof of our theorem will be
complete.

Put f(M)=n;. 'Je have by (4)

1 M
i 0’?‘4?‘(&1)&"1

>cnt > 2M". (15)

We have

] 1 M - M _ b M -
|ﬂM|>2M+I[(m)‘a”J’| ﬂrgnj(nr)‘a“r’ nr%‘nj(n,)la"r |]
1 My
"W[(W)W"H‘Ei‘zz]-

For an estimate of 2, put r—j=4k, then n,—n; > Akn,-”’. Put

(16)

n+t=M+x, %n’kgxg 2 541,
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We have by
A s
f(ﬂ)=f(ﬂ+f)=n;£x>§M’=
M+x M+x
‘( fr )ﬂnr é‘( i )anj
Hence
M " ‘< M M-n+1 M- n+2  M-n+tx
(nr) ol (H;’) ‘M —n;+1 M- n,+2 M-—n;+x
M\ |( kAm" My | ( kA (M/?)’fZ) Ml
n 11— n |1 ——— =
<J(nj)”fi( M )<.(ﬂj)af M
M kA M |
I H 1 1 an e e
<i("f)a" ( 2M”‘ <‘ g

since from f(M)=n;, n; > M/2 (lemma 4). Thus for sufficiently large A®
—2 M
2 3 za<I (mj)a,tf . an

(Rj)anf k=1
In the same way we can show
Ze<7 () - (18)
Thus by (15), (16), (17) and (18)
= ("" )a,,
ny !

which completes the proof of the {heorem.

1 €1 an
=—F(M 2 M
5 ( )>2

|a'M|>2

University of Aberdeen.
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