NOTE ON NORMAL DECIMALS
H. DAVENPORT AND P, ERDUS

1. Introduction. A real number, exprezssed as a decimal, is said to be
normal (in the scale of 10} if every combination of digits occurs in the decimal
with the proper frequency. If @sgs. . .6 is any combination of & digits, and
N(t) is the number of times this combination oceurs among the first ¢ digits, the
condition is that

R
(1) lim =< = .

It was proved by Champermowne [2] that the decimal -1234567891011...1s
normal, and by Besicovitch [1] that the same holds for the decimal - 1491625 . . ..
Copeland and Erdis [3] have proved that if py, s, . . . i5 any sequence of positive
integers such that, lor every # <€ 1, the number of #'s up to # exceeds n® i n i=
sufficiently large, then the infinite decimal « pypaps . . . 15 normal. This includes
the result that the decimal formed from the sequence of primes is normal,

In this note, we prove the following result conjectured by Copeland and
Erdés:

f<hm

TrEoreM 1. Let fix) be any polynomial in x, all of whese values, for x = 1,
2, ..., are positive integers. Then the decimal F1F(23F(3) .. . 45 wormal.

It is to be understood, of course, that each f{n) is written in the seale of 10,
and that the digits of f{1) are succeeded by those of £{2), and so on.  The proof
is based on an interpretation of the condition (1) in terms of the equal distri-
bution of a sequence to the modulus 1, and the application of the method of
Weyvl's lamous memoir [86].

Besicovitch [1] introduced the concept of the (e k) normality of an individual
positive integer g, where ¢ is a positive number and % is a positive integer. The
condition for this is that if gygs . . .4 is any sequence of [ digits, where { = &,
then the number of times this sequence occurs in g lies between

(1 —e)107'% and (141077

where ¢ is the number of digits in g. Naturally, the definition is only significant
when g is large compared with 10", We prove:

Treorem 2. For any e and k, almost all the members (1), F(2), ... are (g k)
normaly that 15, the number of numbers n = x for which fin) 45 nol (e, k) normal

15 0lx) as x — o for fixed e and k.
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This is a stronger result than that asserted in Theorem 1. But the proof of
Theorem 1 is simpler than that of Theorem 2, and provides a natural intro-
duction to it

2. Proof of Theorem 1. We defined N{t) to be the number of times a particu-
lar combination of kb digits occurs among the hrst ¢ digits of a given decimal.
More generally, we define N(x, {) to be the number of times this combination
occurs among the digits from the (i -+ 1)th to the ith, so that N(0, 1) = N{i).
This [unction is almost additive: we have, for ¢ > n,

(2) Niu, f) = N{t) — N{u) = Nu, ) + (B — 1),

the discrepancy arising from the possibility that the combinations counted in
N({t) — Ni{u) may include some which contain both the wth and (& 4 1)th
digits.

Let g be the degree of the polynomial fix). For any positive integer #, let
x, be the larpest inteper x for which fix) has less than n digits, Then, if #n is
sufficiently large, as we suppose throughout, f{x, + 1) has » digits, and so have
Flew +2), o oo o f(241). It is obvious that

(&) %y ~ a(10™)" as# — @,

where o is a constant.
Suppose that the last digit in f{x) occuples the fith place in the decimal
F(1)f(2) . ... Then the number of digits in the block

Flatn 4 107G + 2) .0 o f(20an)
i8 bup1 = 1o, and is also # (x4 — %), since each f has exactly » digits. Hence

(4) besr— T = Bl%a — %)

It follows from (3) that

(5) ty ~ en(10'7)" asn — .
To prove (1), it suffices to prove that

(6) Ntey t) = 1075 — &) + oft)

asn— », forty <! S by For, by (2), we have
n—1
N —N@) = 3 Nl bewd) N 8 + R,
resfl

for a suitable fixed &, where [R| < nk. Since (6) includes as a special case the
result

Nt trer) = 107t — 1) + olt,),

we obtain (1).

In proving (6), we can suppose without loss of generality that ¢ differs from
iy by an exact multiple of n. Putting ¢ = £, + nX, the number N(t,, {) is the
nomber of times that the given combination of & digits cccurs in the block
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(7) Fen 4+ 1)f(xa 4 2) .o floma + X),

where 0 < X = 2,01 — 2. We can restrict ourselves to those combinations
which oceur entirely in the same f(x), since the others number at most (8 — 1)
« (Fpas — %), which is o(t,) by (3) and (5).

The number of times that a given combination aa; . . . a3 of digits cccurs ina
particular f{x) is the same as the number of values of m with ¥ = m = » for
which the fractional part of 10-"f(x) begins with the decimal -guz ... 2e I
we define #(z) to be 1 if 2 is congruent (mod 1) to 4 number lying in a eertain
interval of length 10-*, and 0 otherwise, the number of times the given combina-
tion occurs in f(x) is

2 (107 (x)).

sl
Hence
X "

Nitt) = Z Z 810771 (x)) + Olxes1 — %)y

F=gat+l ==k

the error being simply that already mentioned,
Ta prove (6}, it suffices to prove that
M Tas X
(8) 2O e(107™(x)) = 107X 4 o(n(xeer — %))

ik, P=fa+l

for 0 < X = %551 — % We shall prove that if 4 is any fixed positive number,
and én < m < (1 — §)n; then

TatX
(9) S 0(107(x)) = 107K + 0(zaes — %)

Fegn+ 1

uniformly in m.  This suffices to prove (8), since the contribution of the re-
maining values of m is at most 2énX, where § is arbitrarily small. We have

Elﬂ} x g Hprt — Xy <= u.l:lﬂ'l.r‘n'}l&l.
and we can also suppose that
fll} X > (-1';-.1 . .1:,1)"“ - ﬁ{lnug]nu-u:

where 8 is a constant, since (9) is trivial if this condition is not satisfied.

The proof of (9) follows well-known lines. One can construct [6; 4, pp.
91-92, 99] for any 5 > 0, functions #,(2) and 8:(2), periodic in 2 with period 1,
such that 8,(s) = #{z) = (2}, having Fourier expansions of the form

fi(e) = 107F — g 4 ?‘Armﬂ{”-'i*}-

Bu(s) = 107" 40 + Z'4,%e(s2),

Here the summation is over all integers v with » £ (, and e(w) stands for ™',
The coefficients A, are majorized by
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.| < min(&l,é).

Using these functions to approximate #(10-"/(x)) in (9), we see that it will
suffice to estimate the sum

a+X
Sume =m§+1 (107" uf(x)).
We can in fact prove that
(12) [Sam o] < €X'
for all m and » satisfving
(13) < m < (1— 8, 1=2v<n

where € and { are positive numbers depending only on 8, 5 and on the polynomial
fle}. Thisis amply sufficient to prove (9), since & = 200 — %,

The inequality (12} is a special case of Weyl's inequality for exponential
sums. The highest coefficient in the polynomial 10~ #f(x) is 10— pe/d, where
¢/d is the highest coefficient in f{x}, and so is a ratonal number. Write

e L
0™y i g
where a and ¢ are relatively prime integers. Let G = 201, Then, by Weyl's
inequality?,

(14) |Seais]® < GX (X" 4 X% 4+ X% %)
for any e > 0, where C; depends only on g and e. In the present case, we have

g < 10"d < 109",
and
g = 10% e = 10Myah.
This relates the magnitude of g to that of #. Relations between n and X were
given in {10} and (11), and it follows that

CaX™ g g XYY

where Cy and C; depend only on 9, ¢, d, and g. Using these inequalities for ¢
in (14), we obtain a result of the form (12).

3. Proof of Theorem 2. We again consider the values of x for which f(x) has
exactly # digits, namely those for which x, < » = 241, We denote by T(x)
the number of times that a particular digit combination @as...a; (where
I £ E) oceurs in f(x). Then, with the previous notation,

T(x) = %; B(107™F(x)).

VThe most accessible reference is |5, Satz 267]), The result is stated there for a polynomial
with ene term, but the proof applies generally.
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We proved earlier that (putting X = %401 — wu)s

Tuet X
2 Tlx) ~107'8X asn— o,
F e S |
Now our object is a different one; we wish to estimate the number of values of
x for which T'(x) deviates appreciably from its average value, which is 10~'n,
For this purpose, we shall prove that

e+ X
(15) T Tx) ~ 107X asm— ®,
FemEn 4l
When this has been proved, Theorem 2 will follow. For then
FatX
2 (T —107%)" = ZT'(¢) — 2010 'n) 2T (x) + 107X
F=rat+]

= (107 %% X) asp — o,

Hence the number of values of x with x, < x = 2,4, for which the combination
dyts...a; does nel occur between {1 — &)10-' and (1 + 10~ times, is
0(%ns1 — xa) for any fixed e. Since this is true for each combination of at most
k digits, it follows that f(x) is (e, &) normal for almost all x,

Tao prove (15), we write the sum on the left as

FatX L3 n

(16) T2 2 6(107™f())E(107™f(x)).

oot l ae] =l
Once again, we can restrict ourselves to values of m; and m: which satisfy
(17 B <ot < (1 —8n, dn<me<{1—8mn,

since the contribution of the remaining terms is small compared with the right
hand side of (15) when 5 iz small. TFor a similar reason, we ecan impose the
restriction that

(18) Hig — Mg > dn.

Proceeding as before, and using the functions 0,(s) and 08:(z), we find that it
suffices to estimate the sum

TatX

“’g:l S('ﬂ. iy, Wig, ¥, ?2} i E E{{lﬂ-‘m."rl + iﬂdm‘jr’]f{z}}l

TemZy# 1

for values of »; and »: which are not both zero, and satisfy ]r;l £ J#g] <
If either »y or v is zero, the previous result (7) applies. Supposing neither zero,
we write the highest coefficient again as
s -my NC G
(1:1 v+ 10 r;)d-g

In view of (17) and (18), we have
g £ 10™d < 10" < CX™-"4,
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We observe that ¢ cannot be zero, since
107™ [og| < 107 "™ pa| < 3107wy,
provided that 29* < 10%, which is so for large n. Hence
2
3
It now follows as before from Wey!'s inequality that
| S rs, mia, tora, v, wa)| << cx-k

where again C and [ are positive numbers depending only on §, 5, and the paly-
nomial f{x). Using this in {16), we obtain (15).

g > 510 |7 > Cx ™
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