ON A THEOREM OF RADSTROM
P. ERDOS

The purpose of this note is to give a new and simplified proof of
the following theorem.

THEOREM. Let f(2) = Y -, a,2* be an entire function. Denote M(r)
=max, s, |f(2)|. Assume that lim sup log M(r)/r= . Then there
exists w,, »=0, 1, - - -, with |w,| =1, so that the origin is a limit point
of the roois of the derivatives of k(z)= D= w,a,z".

In other words the theorem holds if the order p of f(2) is greater
than 1 or if p=1 and f(z) is of maximal type.

This theorem is due to Radstrém and was proved by him for the
case p>1 in a recent note.! The result as announced here is best
possible with respect both to order and to tvpe, as is shown by the
example e, where ¢ is a constant (cf. footnote 1, p. 400).

We need the following two lemmas.

LeEMMA 1. Let 2.2 a,2" be a power series with radius of convergence
R < e« and such that [ag/al[ <R. Then 1t is possible to find w,, wy, *
with |w,| =1 so that D, w,a,z has a zero z, with |z| <|ao/al.

Proor. We put wo=w;=1and as+a,2=Pi(z). Obviously P;(z) hasa
zero with the required property. We proceed by induction. Suppose
that we have succeeded in determining we, wy, * * * , w,— such that
the polynomial P, i(z)= D 2§ w2 has a zero sz, with |z
= lan/al[. Consider P,_1(z) +wa,z", |w] =1. Three cases may occur:

1. The equation | P.1(z)| =|a.z*| has a solution on |z| = |ao/ai| .

2. | Puos(2)| > |a@nzr| for all z with |2| =] ao/ay].

3. | Paa(2)| <|@nz*| for all z with |3| =|ac/ai].

In case 1, it will obviously be possible to choose w so that P,_.(2)
+wa.z"=0 on the circle |z| =|as/a:|. In case 2, P,_i(z) +wa,z" has
by Rouché’s theorem as many zeros inside the circle |z| =|ao/ai]
as P,_1(z), that is, at least one, by the induction hypothesis. In case
3, again by Rouché’s theorem, P, ;(2z) +wa.s” has as many zeros in
|z] = ] ao/a1| as a,z", that is, # zeros. In all these cases we can there-
fore choose w=w,, |w.| =1 so that P,_;(z) +a.w,.2" has a zero in the
circle |20 =|@s/ai|. Consider now the power series Y oy @,a.2".
We know that all its partial sums have zeros in or on the circle
| 2| =|ao/ai|. As this circle is strictly inside the circle of convergence
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the same must hold for the infinite series, which proves the lemma.

LeEMMA 2. Let D 2, a,2° satisfy the conditions of Lemma 1, and lei
€ be a positive number. Then there exists an integer n and numbers
Wy, Wi, * ¢, Wy With [m,| =1 such that the series E:’:n w,a,s" has a
zero in the circle | 2| <|ao/a,| +e, irrespective of the choice of the num-
bers w, for vzn+1.

PrOOF. Let 7 be a number with |ae/a:| <r <min (R, |ao/ar| +e€)
and such that the series f(z) = >_.2, w,a,2" constructed in Lemma 1
hasa positive minimum # on the circle |z| =7. Putd,= > = ,..,| a,|r.
We have 6,—0 monotonically. Choose # so large that 2-8, <m, and
let g(z) be any series which coincides with f(2) in the first #+1 terms
whereas in the rest of the terms arbitrary changes of the arguments
are allowed. Obviously | g(z) —f(z)| <26, for |z] =<r. Therefore, by
Rouché's theorem, g(z) has as many roots in |z| 7 as f(z), that is,
at least one (since 7 >|ao/a:|). This proves the lemma.

In order to prove the theorem we first observe that if
lim sup log M(r)/r= «, it follows that lim inf |a,,/(n+1)a,.+1| =0,
for otherwise there would exist a £>0 such that for all sufficiently
large n, @n41 <ka./(n+1). Iterating this we would get, for sufficiently
large #n, a, <ck*/n!, which as is well known implies lim sup log M (#)/r
=<k, an evident contradiction. Therefore there exists a sequence #,
of integers such that a@,./(#n-+1)(2.,.1)—0. We also observe that

f™(g)/n!=an+(n+1)anpuz+ - - - . Now choose a sequence ¢ of
positive numbers with ¢,—0. According to Lemma 2 we can find
numbers wa,, Wag1, ¢ ¢, Wagap, so that if in fO0(z2) /m! we multiply

each coefficient with the corresponding w, we shall get a function
which has a zero in [z| < | @ny/(m1+1)@n11| +€, and we shall still
be able to choose w, arbitrarily if x>n;+#; without destroying this
property. Therefore we can repeat this process, now starting with the
smallest #,>n;+$;. Call that number m: and put m;=n,. Then we
get a new set of @’s, Wny, * * ¢, Wigipy, and if u>me+pe we still have
the free choice of the w,. Iterating this process we shall obtain a
sequence of nonoverlapping blocks of &'s and we complete it if neces-
sary by choosing w, arbitrarily for those » which do not correspond
to an w in a block. In this way we get a sequence wy, @, - - - and we
construct the corresponding power series k(z)= .2, w,a,2*. From
the construction and Lemma 2 it is then obvious that k(z) will have
the property: B (z) has a zero z, satisfying z,< | am,/ (My+1)am, 11
—+e¢,. As the sequence m, is a subsequence of #, and ¢,—0, it is clear
that 2,—0, which proves the theorem,

PrinceToN, N. J.
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