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1. Introduction. In [l] Besicovitch needed as a lemma a result of the fol- 
lowing type. 

THEOREM I. Given a set F of coplanar circles, the center of no one of them being 
ilz the interior of another, and U the circle (or a circle) of I’ whose radius does not 
exceed the radius of any other circle of r, then the number of circles meeting U does 
not exceed 18. 

Besicovitch proved the weaker theorem obtained from this one by replacing 
18 by 21. In this paper we shall prove Theorem 1 as it stands. The number 18 
cannot be replaced by a smaller number, as is shown by the example in which 

all of the circles have radius 1 and the centers are at the following points in a 
polar coordinate system: the origin, the points (1, h. 60’) where h=O, 1, . e . , 5, 
and the points (2 cos 15’, (2K+l). 15”) where K=O, 1, . * - , Il. 

We prove Theorem 1 by establishing its equivalence with Theorem 2 and 
then proving the latter. 

THEOREM 2. It is impossible to have 20 points in* a circle of radius 2 such that 
one of the points is at the center and all of the mutual distances are at least 1. 

Naturally one can ask the general question: For any positive integer n, 
what is the radius r(n) of the smallestt circle containing n points one of which 
is at the center and all the mutual distances between which are at least I? 

Thus Theorem 2 says that r(20) >2. A related question is the following: Of all 

sets of n points in the plane such that the mutual distances are all at least 1 
(with no restriction on the arrangement of the points) what set has the minimum 
diameter1 D(n)? The following theorem answers this question for n=7, 

THEOREM 3. A set of seven points in the plane whose mutual distances are all at 
least 1 has diameter at least 2, wzth this value being attained only by the set of 
points consisting of the vertices and circumcenter of a regular hexagon of side- 

length 1. 

The asymptotic behavior of r(n) and D(n) is well-knowng; in fact, for large n 
the regular hexagonal lattice gives about the best results, so that D(n)-Zr(n) 

~(12/~~)%~~~~ as n--t cc. However we are interested here in small values of n. 

* The term “in” is supposed to include the boundary. 
t It is not difficult to see that the greatest lower bound is attained here. 
$ The diameter of a set of points is the least upper bound of all the mutual distances. For a 

finite set this is simply the greatest mutual distance. Also note that the diameter of a polygon is 
equal to the diameter of the point-set consisting of the vertices. 

0 See [31, [al, [51, [61. 
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For each IZ the values of r(n) and D(n) can be calculated to any desired degree 
of accuracy by constructing a sufficiently fine mesh, but the proofs of our theo- 
rems will show that to accomplish this practically is not easy. 

The first few values of r(n) are as follows: r(2)=r(3) = . * * =1(7)=1, 
r(8) = 4 cosec (180°/7)=1.15 . + *, r(s)=3 cosec 22?5=1.30 * * *, r(lO)=$ 
cosec 20*=1.46 * * - , r(ll)=a cosec 18O=1.61 . . . , ~(12) =1.68 * * * , and 
r(13)=&=1.73 - ’ * . The evaluation of r(8) through ~(11) will come out in 
the proof of Theorem 2; the evaluation of r(12) and r(13) can be effected by 
similar methods. Further, the example before the statement of Theorem 2 shows 
that ~(19) 62 cos lS”= 1.93 . . * . Also ~(20) >2. 

The first few values of D(n) are also easy to find: D(2) =0(3) =l, D(4) 
=v’z=1.41 * * *, 0(5)=3(1+&)=1.61 . * n, D(a)=2 sin 72’=1.90 * . . . 

Further, Theorem 3 gives D(7) =2. For n =3, 4, 5 the vertices of the regular 
n-gon of side-length 1 give the minimum diameter; for n = 6 the best result is 
given by the set of points consisting of the vertices and circumcenter of a regular 
pentagon of circumradius 1. 

2. Proof that Theorem 1 is equivalent to Theorem 2. To show that Theorem 
1 implies Theorem 2 we proceed as follows. Suppose we have K points in a circle 
of radius 2 such that one of the points is at the center and all the mutual dis- 
tances are at least 1. If we construct a circle of unit radius about each point 
and then apply Theorem 1 to this set of K circles, with U as the circle around 
the central point, we get k $19. 

In showing that Theorem 2 implies Theorem 1 (and, in fact, in proving 
Theorem 2) we use a polar coordinate system with radial distance p and ampli- 
tude 8. The set of points such that p St we denote by C(t). Now we may assume 
that the U of Theorem 1 is the unit circle of our polar coordinate system. Thus 
we have a set A of K - 1 circles of radius at least 1 each one of which meets the 
the unit circle U, the center of no one of these K circles (including U) lying in 
the interior of another. Then it suffices to show that we can construct a set A* 
of k- 1 points in C(2) whose mutual distances and distances from the origin 
are all at least 1. We do this by choosing a point for A* corresponding to each 
circle D of A in the following way: if the center of D lies in C(2), we pick the 
center; if the center X of D lies outside of C(2), we pick the point R lying on 
the circle p = 2 and having the same amplitude as X. As a result of this corre- 
spondence the circle of radius 1 about a point Q of A* is contained in the cor- 
responding circle of A; hence Q is at distance at least 1 from the points of A* 
which were originally centers of circles of A. Thus it remains only to prove that 
if two circles of A have centers X and Y both of which lie outside of C(2), then 
the corresponding points R and S of A* have mutual distance at least 1. Let 
0X=x, 0 Y = y, angle XOY =$. Then by the properties of A we have X Y2 
5max {(x-l)“, (~-1)~); that is, 

x2 + y2 - 2xy cos$ B max ((3 - l)“, (y - l)a]. 

Now if we suppose that yzx we have 
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x2 + y2 - (y - 1j2 1 x2 - 1 
cos ti s 

2xy =Ji 
+- 

2XY 

&+--= x2 - 1 1 -- 1 -- 
x 2x2 2 

= 

since x>2. Therefore a2=8-8 cos $21. Thus the points chosen for A* 
have the desired properties and our proof of equivalence is finished. 

3. Proof of Theorem 2. The proof is based upon the following lemmas, of 
which the first is basic and the others are simple corollaries thereof. 

LEMMA 1. Let r and R be such that 0 <R- 157 S R and suppose that we have 
two points P and Q which lie in the annulus r Sp S R and which have mutual dis- 
tance at lead 1. Then the minimum $(Y, R) of the angle SOQ has the following 
values 

d+, R) 
R2 f r2 - 1 

= arccos 
2Rr ’ 

1 
= 2 arcsin 2~ j 

ij R -15&R-l; 
R 

Iti particular 

r$(l, 1.10) > 54:o i$(l. 10, 2) > 16% 

cp(l, 1;15) > 51”5 (b(l. 15, 2) > 2O”O 

4(1, 1.20) > 49’12 @(1.20, 2) > 22”3 

@Cl, 1.25) > 4701 9(1.25, 2) > 24:1 

$(l, 1.30) > 45”2 ti(1.30, 2) > 25’15 

$(l, 1.45) .> 4003 (b(1.45, 2) > 28:3 

q!(i, 1.60) > 36”4 ti(1.60, 2) > 2809 

Proof. It suffices to consider the case in which OQ = R and PQ = 1, If we put 
OP =p, then our problem is to find the minimum of f(p) =angle POQ 
= arccos f (R2+p2 - 1)/(2Rp) ] forpin the interval r Sp 5 R. Bydifferential calculus 
we see that although f(p) may have an interior maximum for p= (R2-1)l12, 
it cannot have an interior minimum. If we compare f(r) =arccos { (R2+r2 
-1)/(2Rr)j and f(R)=arccos {l-1/(2R2)}, we see that when R-16rSR 
- l/R the minimum is achieved for OQ= R, PQ= 1, and OP =r, while when 
R - l/R 5 r $ R the minimum is achieved for OQ = R, PQ = 1, and OP = R. 

We shall find it convenient in what follows to use the term admissible 
points to refer to a set of points in 1 Sp 5 2 whose mutual distances are all at 
least 1. 
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LEMMA 2. There are at most 12 admissible points in the annulus 1.45 Sp I; 2. 

Proof. This follows from the fact that 134Il.45, 2)>360*. (Note that the 
constant 1.45 could be replaced by any number I such that 4(r, 2) >360*/13, 
for example by 1.402.) 

LEMMA 3. It is impossible to have 7 admissible points in C(l.lS), 8 admissible 
points in C(l.30), 9 admissible points in C(l.45), OY 10 udmissible points inC(l.60). 

Proof. In fact, 7$(1, 1.15)>360*, 8+(1, 1.30) >360°, 94(1, 1.45) >360°, 
104(1, 1.60)>360*. (Note that the constants 1.15, 1.30, 1.45, 1.60 could be 
replaced by any values less than 3 cosec (180’/7), 3 cosec 22V.5, 3 cosec 20*, 
4 cosec 18’, respectively. This remark, along with the fact that the vertices of 
the regular K-gon of side length 1 with center at the origin do constitute a set 
of k admissible points in C{ + cosec (1800/K) } , p rovides the evaluation of r(8), 

m, r(lO>, r(ll)). 

LEMMA 4. It is impossible to have 7 admissible points in C(l.30) such that 6 
of them lie in C(l.10). 

Proof. If we had 7 admissible points in C(l.30), 6 of which lay in C(l.lO), 
then of the 7 angles subtended at 0 by pairs of consecutive points (considered 
in order of amplitude) 5 would be each at least +(l, 1.10) and the other two 
would be each at least #1(1, 1.30). But S&l, 1.10)+24(1, 1.30) >360’.4, 

LEMMA 5. It is impossible to have 8 admissible points in C(l.45) such that 7 of 
them lie in C(l.25). It is impossible to have 8 admissible points in C(i.45) such that 
6 of them lie in-C(l.15). 

Proof. The proof is similar to that of Lemma 4. The first part follows from 
the fact that 6+(1, 1.25)+2$(1, 1.45)>363?2; the second from the fact that 
4&l, 1.15)+4+(1, 1.45) >367”2. 

Now we come to the proof of Theorem 2, We suppose that we have 19 
admissible points and seek to get a contradiction. By Lemma 2 there are at 
most 12 admissible points outside C(l.45) and by Lemma 3 at most 8 ad- 
missible points in C(l.45). Thus there are two cases to consider, according to 
whether we have 7 admissible points in C(1.45) and 12 admissible points out- 
side, or 8 admissible points in C(l.45) and 11 admissible points outside. The 
first case we subdivide further, according to whether one of the 7 points lies 
outside of C(1.30) or not. 

Case Ia: 12 admissible points &, * 8 - , B11 outside of C(l.45), 7 admissible 
points Al, - . . , AT in C(l.45), one of the A;, say Ak, outside of C(l.30). All the 
angles BiOBi+l exceed +(1.45, 2) > 2803. (We mean to include the angle B&&, 
of course; similarly in the sequel.) But for any i the angle AAOB~ exceeds 
4(1.30, 2) >25?5 and so one of the angles BiOBi+l exceeds 2+(1.30, 2) >51110. 
However 11 (28?3) +51?0 = 362V3, a contradiction. 
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Case Ib: 12 admissible points Br, * * * , Brz outside of C(1.45), 7 admissible 
points Ar, * = . , AT in C(1.30). By Lemma 3 one of the Ai, say Ak, lies outside 
of C(1.15) and by Lemma 4 another one of the Ai, say A,, lies outside of 
C(1.10). For each i the angle AkQBi exceeds #(l.lS, 2)>20?0 and the angle 
A,UBi exceeds $(l.lO, 2) > 1608. Hence an angular sector of more than 4OYO 
and another sector of more than 33Y6 are ruled out as possible locations for 
points Bi. These sectors cannot overlap, since the angle AkOA, is at least 
$(l, 1.30) >4502. If one of the angles BiOBi+l, say B,OBn+l, includes both these 
sectors, then B,OB,+l exceeds 40?0+33?6 = 73Y6 and we have a contradiction, 
since 114(1.45, 2)+7306>38499. Otherwise we see that out of the 12 angles 
BiOBi+I one exceeds 40?0 and another exceeds 33?6. Since at most 9 admissible 
points can lie in C(1.60), at least 10 of the 12 points Bi lie outside C(1.60). 
Hence at least 8 of the 12 angles B;OB i+l exceed $(1.60, 2) > 2SY9. But 40’10 
+33?6+6(28?9)+4$(1.45, 2)>360?2, a contradiction. 

Case II: 11 admissible points B1, * * * , B1l outside C(1.45), 8 admissible 
point AI, - . . , As in C(1.45). By Lemma 3 one of the Ai, say Ak lies outside 
C(i.30) ; by Lemma 5 a second one of the A;, say A,, lies outside of C( 1.25) and 
a third one of the A;, say A,, lies outside of C(1.15). 

Now for each i the angle BiOAk exceeds #(1.30, 2) >25?5, the angle BiOA, 
exceeds $(1.25, 2) >24’11, and the angle BiOA, exceeds $(1.15, 2) >20?0. Hence 
three angular sectors of more than 51”O. 48Y2, and 40?0, respectively, are ruled 
out as possible locations for the points B;, If one of the angles BiOBc+ly say 
B,OB*+1, includes two of these sectors, then 13,0BHl exceeds 2000+24?1+ 
40?3=84?4, since AnOAm, A,OA,, and A,OAk are each at least +(l, 1.45) 
>463; this gives a contradiction, since lw(1.45, 2)+84?4>36704. 

On the other hand if no angle BiOB i+r includes two of the proscribed sectors, 
then we see that out of the 12 angles BiOBi+l one exceeds 51’?0, another exceeds 
48?2, another exceeds 4OV0, and each of the 8 remaining exceeds $(1.45, 2) 
>28?3. But 51%+48?2+40?0+8(28?3) =365’16, a contradiction. 

4. Proof of Theorem 3. We require the following lemmas, of which the first 
three are well-known. 

LEMMA 6. The area of a triangle does not exceed $43 times the square of the 
longest side. 

LEMMA 7. The product of the diagonals of a quadrilateral is at least twice the 
urea. 

LEMMA 8. 1f a convex polygon has perimeter not less than 2n, its diameter ex- 
ceeds 2. 

LEMMA 9. If there is a point in a triangle whose distance from each vertex is at 
least 1, then some side of the triang2e has length at least ~6. 

Proof. One of the sides of the triangle must subtend an angle of 120’ or more 
at the point in question. 
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LEMMA 10. If 0 < $6 &r and AB CD is a convex quadrilateral with Q ABC 
=$r+& +BCD~$T -SE, and 1 SAB, BC, CD52, then AD>2. 

Proof. Put AB=x, BC=y, CD=z, QBCD=9. Then 

AD2= {y- xcos($r+t) -zcosO}2+ fxsin(&+t) -zsinBf2 

= x2 + y2 + 22 - 2yz cos e + 22x cos (e + ++ + 4) - 2xy eos (fa + f), 

Considering this expression as a function of X, y, z, 0 over the domain 15x, y, 
z 5 2, &r - $5 j 0 I; P, we see from the positivity of the partial derivatives that the 
smallest value of AD2 occurs for x =y =z= 1, 0 = $P-$f. It suffices therefore to 
prove that 

f(5) = 3 - 2 cos (f7r - g) + 2 cos (+w + 44) - 2 cos (j7r + E) 

exceeds 4 for 0 <{s&r; but this follows from the fact that f(0) =4, f()zr) =5 
-4 cos (4n/9), and f”(f‘) <O for 0 rir$r. 

LEMMA 11. If ABCDE is a convex pentagon such that AB, BC, CD, DE>,l, 
AE 2 &i, and 0: C> 120°, then either the diagonul AD > 2 or the diagonal BE > 2. 

Proof. If $A>90°, then BE>2; if <E>90°, then AD>2. Suppose then 
that neither angle adjacent to AE exceeds 90”. Then if QC=lZO”+& we see 
thateither QBZ120°-fr[or <D&120’ - 35, for otherwise the angle sum of the 
pentagon would be less than 90°+900+(1200+~)+2(1200-~~) =.540°. Hence 
by Lemma 10 either AD > 2 or BE > 2. 

Now we turn to the proof of Theorem 3. Suppose then that we have seven 
points in the plane such that the mutual distances are all at least 1. In proving 
that the diameter of the set of seven points is at least 2, we consider five cases, 
according as the convex hull of the seven points is a triangle, quadrilateral, 
pentagon, hexagon, or heptagon. As stated in the theorem we shall find that the 
diameter actually exceeds 2 throughout, except for the subcase of the hexagonal 
case in which the angles of the hexagon are all 120°, the sides all have length 1, 
and the seventh point is at the center. 

The triangular case. Suppose that a circle of radius $ is drawn about each 
of the seven points as center. Then no two of these circles can properly intersect. 
If one side of the triangle is intersected by the circles around two of the four 
inner points, then that side has length at least 3&/2 by the Pythagorean 
theorem. If no side of the triangle is intersected by two of the circles about 
inner points, then the area of the triangle is greater than the area of three 
circles of radius 4, namely 37r/4> &; thus by Lemma 6 at least one side of 
the triangle has length greater than 2. 

The quadrilateral case. Again we construct a circle of radius $ about each of 
the seven points. If one side of the quadrilateral is intersected by the circles 
about two of the three inner points, then that side has length at least 3&/2 > 2. 
Suppose then that no side is intersected by more than one of the circles about 
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the inner points. If just one or two sides are intersected by inner circles, then 
the area of the quadrilateral is greater than the area of three circles of radius 3, 
namely 3x/4> 2, and thus by Lemma 7 at least one of the diagonals of the 
quadrilateral has length greater than 2. 

Now notice that if a side of the quadrilateral is intersected by the circle 
around one of the inner points, then that side has length at least t/3 by the 
Pythagorean theorem. If three sides are intersected by inner circles and the 
quadrilateral is a rectangle, then all sides of the rectangle have length at least 
43 and hence the diagonals have length at least 46. If three sides are inter- 
sected by the circles about inner points and one of the angles of the quadrilateral 
exceeds 90°, then at least one of the sides adjoining that angle has length 43 or 
greater, while the other side adjoining it has length at least 1; hence (by the 
law of cosines) the diagonal spanning this angle has length greater than 2. 

The pentagonal case. Again if the circles of radius $ about the two inner 
points intersect the same side of the pentagon, then that side has length at least 
3&/2. On the other hand if these two circles intersect two different sides of 
the pentagon, then both these sides have lengths at least t/3, the pentagon has 
perimeter at least 3+2&>2 K, and thus by Lemma 8 the diameter of the 
pentagon exceeds 2. 

Thus we assume that at least one of the inner points, say K, has a distance 
from the perimeter of the pentagon greater than 3. Then the other inner point, 
say L, must lie in one of the triangles formed by K and consecutive vertices of 
the pentagon, say the triangle RAB. By Lemma 9 one of the sides of the tri- 
angle KdB has length at least 43. If either AK or BK has length & or more, 
the diameter of the pentagon exceeds y/3++>2. We suppose then that AB 
2 43. Since one of the angles ALK and BLK is at least 90°, either AK? d2 
or BK 2 &. Suppose AK 142. Then prolong AK until it meets the pentagon 
again at a point X. If AX>2, we are finished. If AXS2, then KXS 2- d/2, 
the side on which X lies has length at least 2( 1-(2-~‘2/2)~] n2>1.62, the 
pentagon has perimeter greater than 3+1.73+1.62 =6.35 >2~, and thus the 
pentagon has diameter more than 2 by Lemma 8. 

The hePtagonal case. This case is settled immediately by Lemma 8. Actually 
by pushing our methods further it is possible to prove that of all convex hepta- 
gons with sides of length at least 1 the minimum diameter occurs for the regular 
heptagon of side-length 1, in which case it is l+2 cos (2x/7) = 2.24 6 - . . 

The hexagonal case. Dismissing the case in which a side of the hexagon has 
length greater than 2, we separate the proof into cases according to the number 
and arrangement of those angles of the hexagon which exceed 120’. First of all 
we note that if two adjacent angles of the hexagon exceed 120°, the diagonal 
spanning these two angles has length greater than 2. This case occurs, for ex- 
ample, if there are four or five angles of the hexagon exceeding 120*. 

If exactly one angle of the hexagon exceeds 120°, say is 120°+5, then one of 
the angles adjacent to it is at least 120’ -36; the proof is completed in this case 
by Lemma 10. If exactly two angles of the hexagon exceed 120°, say have the 
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values 120°+a! and 120°+p, and these two angles are non-adjacent, then 
somewhere in the hexagon we have a pair of adjacent angles of which one is 
120°+t, [>O, and the other is at least 120’ -St;; for otherwise the pentagon 
would have an angle sum less than (120°+a)+(i200f~)+(1200-~~) 
+(120’-$3)+(120°-i max (a, p))+120°~7200. Again the proof is com- 
pleted by Lemma 10. 

In case that exactly three of the angles of the hexagon exceed 120° and no 
two of these are consecutive, let A, B, C, D, E, F be the vertices of the hexagon 
and let A, C, E be those at which the angles exceed 120’. First we remark that 
if one of the sides of the hexagon has length greater than $(da - l), we have a 
diagonal of length greater than 2 by the law of cosines; thus we may assume all 
sides of the hexagon to have length not exceeding $(dfi -1) < y’j. The three 
diagonals AC, CE, Ed divide the hexagon up into four triangles. Qne of these 
four triangles contains the seventh point and hence one of the three diagonals 
AC, CE, Ed has length at least 43 by Lemma 9. Suppose Ed 5 d/3. Then by 
applying Lemma 11 to the pentagon ABCDE we find a diagonal of length 
greater than 2. 

The only case left is that in which no angle of the hexagon exceeds 120b, 
i.e., all angles are 120’. We easily see that every diagonal spanning two angles 
has length at least 2 and that the diameter is exactIy 2 if and only if all the 
sides of the hexagon have length 1 (with the seventh point at the center nat- 
urally). 

5. Further questions. Another function which we could consider is the diam- 
eter d(n) of the smallest circle containing n points whose mutual distances are 
all at least 1, without the restriction that one point be at the center. Obviously 
D(n) Sd(n) 5 2r(n) and the same general remarks that were made about D(n) 
and r(n) could be made about d(n). The first few values of d(n) are d(2) = 1, 
d(3)=2/&=1.15 . . a, d(4)=&=1.41 . . . , d(S)=cosec 36’=1.70 + . * , 
d(6) = 2, d(7) = 2, 

Naturally we can consider the analogue of d(n) for other figures than the 
circle, for example, the side-length t(n) of the smallest equilateral triangle con- 
taining n points whose mutual distances are all at least 1. An interesting un- 
solved question about t(lz) is whether or not t(# { K+l } +l) >b - 1 for K a 
positive integer, Obviously t(+K f K+ 1) ) $ K - 1, since the regular hexagonal 
lattice gives +K {R+ 1 t a d missible points in a triangle of side-length K - 1. 

In the proof that D(7) =2 we remarked that of all convex heptagons whose 
sides have length 1 or more the minimum diameter is assumed by the regular 
heptagon of side-length 1. An analogous statement can be made for triangles, 
quadrilaterals, and pentagons. However for hexagons the minimum diameter is 
assumed by the equilateral hexagon of side-length 1 whose angles are alternately 
90’ and 150’. The situation for n-gons with n > 7 is an open question. 

Another interesting problem is whether or not r(n+l) >r(n) for n 2 7 and 
whether D(n+l) >D(n) for nZ3. It follows from Theorem 3 that D(8) >D(7) 
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=2, since the diameter of a set of seven points (with mutual distances 1 or 
more) is greater than 2 except for one special configuration (for which we can 
make a separate argument). 

Of course we can consider the analogues of r(n) and o(n) in K dimensions, 
say rk(n) and Dk(n). Clearly &(n> = 1 for n_lkf1, It would be interesting to 
have a good estimate for D&+2) from below. It is probably true that &(K+2) 
h v/;iT3, but this seems difficult to prove. On the other side it is easy to give an 
example to show that Dk(Kf2) 5 y’4k/(3h-2). As for rk(~), we do not even 
know the smallest value of n such that rk(n) > 1, except for K = 2. For n-+ CT, 
there are asymptotic relations of the form (cf, [2]) 

+Dk(n) - rk(n) - ckn*‘b, 

but ck is not known for k > 2. 

6. Added in Proof: After this paper was submitted for publication, a proof 
of our Theorems 1 and 2 was published by E. F. Reifenberg, Math. Gaz., vol. 
32, 1948, pp. 290-292. His proof is in general similar to ours, although consider- 
ably different in detail. 

The problem mentioned briefly in the third paragraph of $5 has been dis- 
cussed recently in a paper by S. Vincze, Acta Univ. Szeged. (Sect. Sci. Math.) 
vol. 12, part A, 1950, pp. 136-142. For n not a power of 2 he shows that the 
minimum diameter possible for convex n-gons whose sides have length at least 
1 is + cosec(rr/2n). In particular for even n having at least one odd prime factor 
the regular n-gon of side length 1 does not give the minimal diameter. Vincze 
points out that a closely related problem was considered earlier by K. Rein- 
hardt, Jber. Deutsch. Math. Verein., vol.. 31, 1922, pp. 251-270. 
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