A THEOREM ON THE DISTRIBUTION OF THE
VALUES OF L-FUNCTIONS
By S. Cuowra anp P. Erpos
1. Let (d/n) [where d=o0, 1 (mod 4), d#u% u
integral] be Kronecker’s symbol Define for s> o

g E rd ) n-s.
Denote by g(a, thc number of positive integers
d < x such that
d=o0,1 (4); d>o0; d=+£u?;
L,(s)<a.
We prove the following
THEOREM. If s> 3/4 we have

iLn; g(:—;:)- = g(a) exists;

Surihermore g(0) =o, g(w) =1 and g(a), the distribution
Junction, is a continuous and strictly increasing function of a.

It is implicit in our theorem that for almost all
d [i.e. with the exception of o(x) integers d < x] L;(s) >0
provided that s> 3/4. This result seems to be new.

If the extended Riemann hypothesis holds, then of
course L,(s) > o for all d.

We can also prove our theorem when 4 runs over
negative integral values whose absolute values do not
exceed x. (Similar questions on the distribution functions
of number theoretic functions were considered in several
papers of Wintner, e.g. Amer. Jour. of maths. 63, (1941),
223-248 ; see also Jessen-Wintner, Trans. Amer. Maih. Soc.
38 (1935), 48-88.)

2. Write for s> o,

L;(s, »)= ( )fz"

LY (s, y)= E ( ) e
"gi'
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o d
Ly (5) == (3 ),

where, in the last two summations, z runs only over
positive integers whose greatest prime factor does not
exceed /. Clearly

| y d
L, (s, #)—L9(s, #) =3 (D)=,
ngxzjg;’;’(ﬂ)}t
where P(r) denotes the greatest prime factor of n. Hence

[ Ly(s, x21‘3) L (e #?

: 3 (5)(5) G

P St
summing for all d=o, 1 (4) which are in the range
2 < d < x and are not perfect squares:

2| L, (5, ) ~L§ (5, #7) |

" ,,<,23( )( ) (mn)=* = 5,432,

P(m) P(n)}f
where in s, the product mn is not a perfect square, while
in 5, the product mn is a square.

To estimate 3, we use
LemMa 1. Ifk is not a perfect square we have
d
= ) = 0(k* log k)+0O(x%).
3 ( k) (£ log k)+0(x%)
The summation is for all d with
agdgx;d=0,1 (4); d#o.
Froof. Polya (Gotiinger Nachrichien, 1918) proved
that
; x(n) = O(k* log k)

if x is a primitive character (mod k), #> 1. From this
several writers deduced that this resultis true for any
non-principal character (mod £). We easily deduce
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b b
s X(n) = O(Vklog k),s x(n) = O(Vk log k)
w=0(4) n=104)
which proves Lemma 1; the term O(Vx) in the lemma is

accounted for by the fact that the summation in our
lemma excludes the d which are perfects quares.
Thus using Lemma 1 we have (since s > 3)

V (mn) log (mn)+Vx

|3 <e =

G 11<‘,_,2,r3 (m ?I)
< ed xaf.‘i 25)+ s+x-§l2 23)+‘}l —o(x) (:I)
In =,, mn = w?, hence
=23 xd(w?)
[Ezlxw—l w?s <‘Vt‘f (2)
P(w)>t

where d(n) denotes the number of diviscrs of #n. We
used here the well-known fact that d(n) = O(n) for any
e> o0 and also that s> 3.

Thus we obtain from (1) and (2)

LemMA 2. Let s>3. Then there exists an absolute
constant ¢ so that

2 ( 2 Ly
3|Ly (5 ) =19 (5, 68) [P <

3. We next estimate
L(s)-Lo(s,#) = 5 (5 ) =s

n>x2f3
O \/d] d A o oF
= QA 08 &) _ oet=metey = o (1). (3)

Further we have

LY () =LY (s, x3) = ( ) =
nvd]3
Pin<t

=0( 5 n™), (4)
n>2[3
Piy<e

since the number of integers n < x for which P(n) < ¢ is
less than

] w{t) 1 ¢
(iogz) < (logz)
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where =( y) denotes the number of primes<y. We

obtain by partial summation from (4) that
&

LY (9-L9 (5, 1) <e ([E2) ¥ ¥=0(0),  (5)

as x tends to «, for any fixed ¢

Combining Lemma 2 with (g) and (5) we obtain

LemMma 3. For every positive 5 there exist an ¢ and iy so
that for the number of integers d with1 < d <x [d=o0,1 (4),
d+£u?] satisfying

| L (s) ~La(s) ]| >e

is < 8 x whenever t > t, and x is large enough [x > %, (8)].

9. We define the primes

h<pe<pse.. <l
and all less than ¢ as follows:
b1 =153 pis1 is the least prime satisfying
iy >10p (1<i<k—1).
We define the signature of 4 with respect to a set of
primes as the set of values of (d/p), where p runs through

the given set of primes.

Denote by ¢y, ¢2,-->q, the primes <¢ which are
distinct from the p’s. We have k+m = =(¢).

Let d, and d, be two values of d which have different
signatures with respect to the p’s but the same signature
with respect to the ¢’s. Let p, (f <k) be the first prime
p for which the signatures of d, and d, disagree. Then
we clearly have

LY (s) L” (5) R
g — Pt
(L“’ (s) L(” (s) ) > (1+P: ):=I}+1 I+Pt_‘)

> (14577) :=?+ (1—2p7%) > (1+47%) {1-2 fjﬂﬁ:“}

ke |- platat—))
I+p (I—-—p )
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= IHST—Sh > 148 > 1434
> 1+3p5°. (6)
In the above we used that 2p;* < 1 which follows from
s>%, pr=75. Alsowe used p;5; > 10 p;. We next prove
; - inequalit
LEmMmA 4. Ifa>o ando<8<4p;-{-1 the inequality
a—e < LY (s) < a+e
cannot be satisfied by d = d, and d = d, if d, and d, are values of
d such that their signature with respect to the primes p is different,
while their signature with respect to the primes q is the same.

From (6) it follows that Lemma 4 is true if « is so
small that
a+e 1
oo =
ad—e = +2 pi,
€ 27 pyt
2 <21z B
<
1+4 03
This proves the lemma.

Let y, denote the number of d<x [d>o0; d=o,
I (4); d+£u*] such that all the d’s have a fixed signature
with respect to the ¢’s.  Clearly s assumes
}l — Sm — 31?(0—‘3
values, and

x
Y1t It et 1 =5+0(v %),
where the constant implied in the O is an absolute one.

Again the d’s (which have a fixed signature with
respect to the ¢’s) fall into 3*= g classes according to
their signature with respect to the p’s. Thus

Js = Z1s R oo +z93 (I <SS gh)' (7)
Clearly
gh - Srr(t).
Next we prove
LemMmA 5. For & > x, (k) we have
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Kbs
Js 2t I:

Proor. Thed’s < x which havea partlcular signature
with respect to the-q’ s are (by assumption) », in number
(3="1; 2 850 s L&t
ga;’ qﬂz’ Tt gaw

be the primes ¢ for which (d/q) = o; let
gﬂls 982’ [ gﬁw'

be the primes for whih (d/g) = +1 ; finally let
g’rp ng? Lt g‘rw"

be the primes ¢ for which (d/g) = —1. We have

ww'tw” = z(t) —k = m.
It is evident that

— E & ot = gﬁ.._l ! g'r.,
Js 2, H q«,, R "*—"2 qB” ) ﬂEl ( )-]»O(Vx
= %% 0y, @

where the constant in the last O may also depend on i.
Consider next the value of z,. This number is the
number of 4 < x which have the above signature with

respect to the ¢’s and also have a fixed signature with
respect to the p’s. Write

(g) =o forp=p, (1<n<).
(g) =+1forp=p, (1<n<).

d i
(1‘;) =l forﬂzﬁv” (I gngv’).
Then
v+0'+0" =k,
Further it is evident that

=0 1 Pt) o (ﬁ*» "

2 =1 " n=1 21)3”

=PQ2+0(V #). (9)
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From (8) and (9), we have
Zpsl¥e = P40 (x73). (10)
The lemma thus follows since P < 27* [k > 1].

Consider now the d’s which have the same signature
as the numbers of y, (1 <sg%). By Lemma 4 at most
max (z,,) [1 < b < 3] of them satisfy the inequality

a—e< LY (s5) < ate. (11)

Hence by Lemma 5 the total number of 4’s not exceeding
x which satisfy (11) is at most

ZatZprtyyte < 27 (et st ) =278 £+O(V %)}
Thus, we have (choose 27% < )

LemMA 6. Given any positive 8, there exist by, e, x, such
that the number of positive d < x with d=o, 1 (4), d= 4, and
a—s < LY (5) < ate (1 2)
is less than s x for all t > ty, x > x,.
The case ¢ = o needs special discussion. Here (12)
has to be replaced by
o<LP (s) <e (13)
whence
-5 -1
s1m 3 1= (2 e
Now the sum

1(5,9.5‘,; = x/2+0(V %),

where d runs over integers which are=o0, 1 (4), not
perfect squares, and < x.

It easily follows that Lemma 6 is true witha=o
when we replace (12) by (13).

6. Proof of the theorem. Denote by g, (a, x)
the number of integers d<x[d=o0,1 (4), d#u? d>0]
for which

LY (s) <a.
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It is easy to see that
. &(a, %) _
,l,l_.rg T xl2 /2 4 (aa t)
exists, This follows from the following simple observation.

The expression
B oy T
20-(G)
is periodic in 4 (mod p, ;... p,,), where p,,..., p,, are all
the primes?. As dgoes from 1 to p, p,...p, suppose
that there are N, values of 4 for which
o< LY (s) < a.
Then :
. gila,x) 2N,
AT TR Yy

We next prove

lim g(a, t) = g(a),
where g(a) was defined in § 1.
To do this it will suffice to show that given an
arbitrary positive 5 we can find 4, x, such that
[gr (a: x)"g(a: x) | <7x
for t> t,, x > x, (7).
We split the integers d<x [d=o, 1 (4), d=#4]
which satisfy
LY (s)ga, L;(s)>a

or
LY (s)>a, Ly(s)<a

in.o two classes:

I | LY (s) =Ly () | > =

By Lemma g the number of these integers is < 5 x.

1I a—: < LY (5) < ate.

By Lemma 6 the number of these integers is < 8 x.

This completes the proof of our theorem. The fact
that g(a) is a continuous and strictly increasing function of
a follows easily by the arguments of Lemmas g and 6.
University of Kansas
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