
A THEOREM ON THE DISTRIBUTION OF THE 
VALUES OF L-FUNCTIONS 

By S. CWOWLAAND P. ERDOS 

1. Let (d/n) [ h w ere dro, I (mod 4), d+rP, ZL 
integral] be Kronecker’s symbol. Define for s > o 

L,(s)=4 @n-T 
Denote by g(d, x) the number of positive integers 

d Q x such that 

dso, I (4); d>o; d#u2; 

Ld (s) < a* 
We prove the following 

THEOREM. Ifs > 314 we have 

F-5 “f = g(a) exists ; 

furthermore g(o) = o, g(eo) = I and g(a), the distribution 
function, is a continuow and strictly increasing function of a. 

It is implicit in our theorem that for almost all 
d [i.e. with the exception of o(x) integers d < x] L,(s) > o 
provided that s > 3/4. This result seems to be new. 

If the extended Riemann hypothesis holds, then of 
course L,(s) > o for all d. 

We can also prove our theorem when druns over 
negative integral values whose absolute values do not 
exceed x. (Similar questions on the distribution functions 
of number theoretic functions were considered in several 
papers of Wintner, e.g. Amer. Jour. of maths. 63, (IgJI), 
223-248 ; see also Jessen-Wintner, Trans. Amer. Math. Sot. 

38 km), 4.8~33.) 
2. Write for s > 0, 

Ld (6 Y) = nSy ( :)n-Y 

L;) (s, y) = f (f)n-: 
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where, in the last two summations, II runs only over 
positive integers whose greatest prime factor does not 
exceed 1. Clearly 

L, (s, x2q -Llf)(s, 2’“) = 2 (i, n-+, 

,z<r2/3,np(n)>t 

where P(n) denotes the greatest prime factor of n. Hence 

summing for all ds o, r (4) which are in the range 
2 <d < x and are not perfect squares: 

zj 1 L, (s, x2’“) -Ljy (s, x2’“) 1” 

where in x1 the product m n is not a perfect square, while 
in I& the product mn is a square. 

To estimate zt we use 

LEMMA I. If k is not a perfect square we have 

4 ($) = O(k* log k)+O(x:). 

The summation is for all d with 

2<d<x; d=o, I (4); dfu’. 

F ROOF. Polya (Gottinger Nachrichten, I g 18) proved 
that 

ix(n)=O(k+logk) 
0 

if x is a primitive character (mod k), k > I. From this 
several writers deduced that this result is true for any 
non-principal character (mod k) . We easily deduce 
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i x(n) = O(Vklog k),; x(n) = Q.(V\/k log k) 
n,oa(4) la&l) 

which proves Lemma I ; the term O(Vx) in the lemma is 
accounted for by the fact that the summation in our 
lemma excludes the dwhich are perfects quares. 

Thus using Lemma I we have (since s > 2) 

[s,l <c 2 
V(mn) log (mn)+Vx 

m, n<xv bw 
< G { X~(3--2s)3~+X~(2-2~)S3 ] = o(x). 

(1) 
In x2, mn = zw?, hence 

where d(n) denotes the number of diviscrs of n. We 
used here the well-known fact that d(n) = O(e) for any 
E > o and also that s > 2. 

Thus we obtain from ( I) and (2) 

LEMMA 2. Let s>$. Then there exists an absolute 
constant c so that 

I: 1 L, (s, x5) -Lf) (s, xq 12 < yt. 
d 

3. We next estimate 

L, (s)-L, (s, x2/3) = r, 
0~213 

= o(ddlog d, = O(x+2/3s+~) = n @) 
X2P * (3) 

Further we have 

L’,‘) (s)-LLli’) (s, xq ==;2,1( ;,?P 

P(rz) -d 

since the number of integers n < x for which P(n) Q t is 
less than 
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where ~(9) denotes the number of primes < y. We 
obtain by partial summation from (4) that 

log x t 
IL$ys)-L’,)(s, &)j<c (IF*) x-+=0 (I), (5) 

as x tends to to, for any fixed t. 

Combining Lemma 2 with (3) and (5) we obtain 

LEMMA 3. For ewery positive s there exist an E and to so 
thatfor t/ze number of integers d with I < d<x [d=o, I (a), 

d # u”] sattifying 

[ w (4 4 (4 I > E 
is < s x whenever t > to and x is large enough [x > x, (s)] . 

5. We define the primes 

P,<P2<P,*- CPS 
and all less than t as follows: 

p1 = 5; pi+* is the least prime satisfying 

p;+1> Iopf (I <.<kk-I). 

We define the signature of d with respect to a set of 
primes as the set of values of (d/P), where p runs through 
the given set of primes. 

Denote by ql, q2) ..., qm the primes <t which are 
distinct from the p’s, We have k+m = x(t). 

Let dl and d2 be two values of d which have different 
signatures with respect to the p’s but the same signature 
with respect to the q’s. Let pi (j < k) be the first prime 
p for which the signatures of dl and d2 disagree. Then 
we clearly have 

> (I-l-Pi”) &JI--2P;‘) > (I+P7) { I-2 t=;+lP;.s } 

> (ICPi”) { I-- ; ($+$i+$+ -*) z 
1 

= (I+pi”) (I-@) 
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= I+$pl?-$p,2s > I$$P,T” 2 1+&p;” 

> I+*p2. (6) 
Zn the above we used that rp,~~ < I which follows from 
s > I$, PI = 5. Also we used picI > IO pi. We next prove 

LEMMA 4. Ifa>oando<E< a 
4PSkfi 

the inequa& 

a--E < it(y) (s) < a+.5 
cannot be satisjeed by d= d, and d = d2 i_f’d, and d2 are values of 
d such that their signature with respect to the primes p is diferent, 
while their signature with respect to the primes q is the same. 

From (6) it follows that Lemma 4 is true if E is so 
small that 

a2 < 1+I, 
- 2P; 

;< 
2-1p;” 

2+2-l pj$ 

a 
&<-. 

I-t-4Pf 
This proves the lemma. 

Let T$ denote the number of d < x [d > o ; dE 0, 
I (4) ; d# u”] such that all the d’s have a fixed signature 
with respect to the 4’s. Clearly s assumes 

h = 3nz = y(t)-k 

values, and 

y1+y2+ -4y,=3c;+O(L/x), 

where the constant implied in the 0 is an absolute one. 

Again the d’s (which have a fixed signature with 
respect to the q’s) fall into 3k = g classes according to 
their signature with respect to the p’s, Thus 

y* = rz1$+z2s+ *‘- +zgs (I <s<h). (7) 
Clearly 

gh = 3*(f), 
Next we prove 

LEMMA 5. For x > x0 (k) we have 
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y<$ [I <b<g-j. 

PROOF. The d’i < x which have a particular signature 
with respect to the*q’s are (by assumption) yS in number 
(s = I, 2, 3, . . . , h). Let 

qq2 !Lp *** 5 qa, 
be the primes q for which (d/q) = o ; let 

4Br, 4ap ’ * * > %!3,’ 

be the primes for whih (d/q) = +I ; finally let 

cq2 q”;g **’ 2 q-vtuf~ 
be the primes q for which (d/q) = -I. We have 

w+-w’-/-zB’~ = T(t)-k = m. 
It is evident that 

x w 
ys = $ Jpitl,ln=l : (qs) z1 p$)+O(vx) 

A n 

= ?+0(\/x), (8) 

where the constant in the last 0 may also depend on 5. 
Consider next the value of zZbs. This number is the 
number of d < x which have the above signature with 
respect to the q’s and also have a fixed signature with 
respect to the p’s. Write 

d 
( > P 

=o forfl=p,,$ [I <nnu). 

d 0 j 
=+I forp =p,,* (I < 72 < 7~‘). 

d 
( > P 

=--I forp-pn,ll (I ~ngu”). 

Then 
v+v’+v” = k. 

Further ft is evident that 

Q 
&s= * 

= Pi+O(vx). 
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From (8) and (g), we have 

&lYJ = P+ 0 (x-.‘i) . (4 

The lemma thus follows since P < 2-k [k > I]. 

Consider now the d’s which have the same signature 
as the numbers of y, (I < s < h). By Lemma 4 at most 
max (zbS) [I Q 6 Q 3R] of them satisfy the inequality 

a- E < Ly (5) < a+&. (11) 

Hence by Lemma 5 the total number of d’s not exceeding 
x which satisfy (I I) is at most 

s,&92+z~3+**‘< 2-k (y1+yz+y,+...) = 2-7 %+o(vx) }. 

Thus, we have (choose 2-R < S) 

LEMMA 6. Gitren any positive s, there exist to, + x0 such 
that the number of positive d < x with dz o, I (4), d+ u2, and 

a--a < L-6’) (s) < a+E 02) 
is less than 6 x for all t > tO, x > x0* 

The case a = o needs special discussion, Here (12) 

has to be replaced by 

0 < Lf) (5) < .? (13) 
whence 

S,= II { I-(d/..)j+e-‘. 
bQt 
- - Now the sum 

where d runs over integers which are= o, I (4, not 
perfect squares, and < x. 

It easily follows that Lemma 6 is true with a = o 
when we replace ( I z) by (13). 

6. Proof of the theorem. Denote by g, (a, X) 
the number of integers d Q x [d= o, I (4), d+ u2, d > 01 
for which 

Lp) (5) Q a. 
3 
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It is easy to see that 

,,&) =g(q t) 
z-303 xl2 

exists. This follows from the following simple observation. 
The expression 

l-It { I-(;)P-‘)-l 

is geriodic in d (mod p1 p2 . . . pw), where pi,. . . , pw are all 
the primes < 1. As d goes from I to p1 p2 . . .& suppose 
that there are .iVt values of d for which 

Then 
0 < Jy (s) < a. 

limg’ (‘, ‘) = 2JV, 
x-m3 42 P1Pz-Pw’ 

We next prove 
ky S(% 4 = &a 

where g(a) was defined in § I. 

To do this it will suflke to show that given an 
arbitrary positive 17 we can find to, X, such that 

I& (4 4-g(Lz, 4 1 < 7x 
fort> tO,x>xO (7). 

We split the integers d < x [d, o, I (4), dgtd] 
which satisfy 

or 
w (4 > 4 JL (s) < a 

in.0 two classes : 
I 1 L[E) (s) --Ld (s) 1 > c. 

By Lemma 3 the number of these integers is < s X. 
II a--B < Ly (s) < a+E* 
By Lemma 6 the number of these integers is < 6 x. 

This completes the proof of our theorem. The fact 
thatg(a) is a continuous and strictly increasing function of 
a follows .easily by the arguments of Lemmas 3 and 6. 
U&tssity af Kansas 
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