SOME PROBLEMS AND RESULTS ON CONSECUTIVE PRIMES

by P. Erdds (Syracuse) and A. Rényi (Budapest)

§1. Let =2, =3, p3=5, #s...P,. ... denote the
sequence of primes. In what follows we shall be concerned with
some problems regarding difference and quotient of consecutive
primes. We put

(1) dﬁ=Pr*—#»—1.Qn=p%, n=223....

There are many unsolved problems regarding the sequences dx
and ¢s, and the subject is full of peculiar difficulties. For instance
it has been conjectured by many authors that ds = 2 for in-
finitively many values of #, i.e. that the sequence of ‘‘twin primes’:

35 57 11,13 17,19 2931 4143

is infinite. Neither this, nor the more feeble conjecture that dy
does not tend to infinity, has been proved up to now. Moreover

at present we are unable to prove even that /im . . 0
n—»co l0g 7
In this direction it has been proved by P. Erpos!) that
: dn
2 im — <C < *
(2) R mori )

Recently R. A. RaNKIN %) proved, that for C we can choose §§,
and according to an oral communication of A. SELBERG he can
improve this result by choosing for C the value }§. This is all we
know about the small values of dx. In the opposite direction it
can be proved by the method of VicGo Brun that twin primes
and more generally pairs of consecutive primes the difference of
which is equal to a fixed (even) integer 2k, are rather ‘““few"’. More
precisely, we have the following result #): The number of solutions
of dw = k, pn = x does not exceed

1% 1
3 Wi S (] + _.) o
@) log? %, P )
*) From the prime number theorem it follows only lm —— < L.
n—>c0 log 7

**) We denote by ¢,, c,, ... positive constants, and by ¢ a positive
constant which is not always the same.
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It follows from (3) that the sequence dy is not bounded. As a matter
of fact, this follows also from TCHEBYSHEFF's estimation 4)

B (x) = 2 logpn < %,
Pasx

and also from the trivial remark that no one of the consecutive
numbers n! + 2, n!' 4+ 3, n'! +4,...n! 4 % is prime, and thus
there are arbitrarily large ‘‘gaps” in the sequence of primes. From
TCHEBYSHEFF's estimation, mentioned above, it follows also that

fim —— dn = —l- According to the primes number theorem we can
n—>00 lOg p"
choose ¢, = 1 + £ for any e > 0, if x is sufficiently large and thus
we obtain Tim = 1. In his paper %) where previous results
#—>00 l ?"
are quoted, P. ErpOs proved, that
s
4 Tim
@ n->00 108 - 10g 108 P~
(log log log pw)*

This has been still improved by RANkiIN ¢) by adding in the
numerator of the denominator in (4) the factor loglogloglog fn.

§ 2. If the conjecture regarding twin primes would be proved, it
would follow that the sequence dy, oscillates between 2 and arbitrary
large values, thus it would be ncither monotonically increasing
nor decreasing, from some point onwards. This result has been
proved without any hypothesis, by P. Ernos and P. TURANT).
They proved also that the sequence g. is also neither monotonically
increasing nor decreasing. These results can be expressed also by
saying that the sequences p» and log ps are neither convex nor
concave from some point onwards. A generalization of this result,
regarding the sequence log pu, has been given recently by A. RE-
NI 8). His result formulated in a geometrical terminology, runs as
follows: Let us consider a finite polygonal line situated in the
complex z-plane and having the consecutive vertices zy, zy, . . . 2.
The total curvature of this polygonal line is defined by

n-1

. 241 — 2k
©) R = k£2 A — zi

where arg Z denotes the argument of the complex number Z, i.e.
ifZ=7r.69 r>0, —n <@ =mn we have arg Z = ¢. Now let
an denote the polygonal line with the vertices z» = n + ¢. log pw,
pn+1 = N and let Gy denote its total curvature, It isevident, that
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if the sequence log pn would be convex or concave from some point
onwards, Gy would be bounded. But RENYI proved that Gy tends
to infinity, as a matter of fact he proved Gy > c. logloglog N,
thus giving a necw proof of the theorem of Ernos and TuraAN
mentioned above. In waht follows we shall prove a refinement of
this result, giving the exact order of magnitude of Gw:

Theorem 1. 1f Gn denotes the total curvdture, defined by (5),
of the polygonal line zy having the vertices zy = n + 7. log pm,
pn+1 S N, we have

(6) cg.log N < Gy < ¢y.log N.

It scems probable that lim

N +ool0g

not able to prove this. The proof of Theorem | will be completely
elementary. Besides the estimations of TCHEBYSHEFF

)] Cy

and pu+1 < 2pn, we shall use only the method of BrUN.

exists, but we are at present

. 2 *
1Og:":<:t(x)f-:.'.*:ﬁlﬂg:x, )

§ 3. Proof of Theorem 1. Clearly we have

(8) Gy = X |arctgloggus1 —-arctgloggul.
Phr1= N

Using arctga-—arctg b = arctg H this gives

log 9’__“__;+1
g G e E t " .
. N ny1S N i 1 + log gu+1 . log g

As according to (7) the sequence ¢ is bounded, we obtain from (9)

(10) CeLn <Gn < LN
where
(1 ILyn= X 10g@i3 :
tuy1s N In
As regards the upper estimation, it can be finished at once: we have
dn du

12) Lv<2 Z |loggal=2 = |10g(1 )y 52
( ) N < p.leogq”‘ tns N g +P~*1 p.sN‘P"
Now_ we obtain

dn 1 2 log N
13 %<zl z a)s z1sED
13) b5 N Pn org N2k \arp, ook +1 Terg N log 2

*) = (%) denotes the number of primes which are < #.
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Thus the upper estimation of (6) is proved. As regards the lower
estimation it is somewhat more intricate. We proceed as follows:

gn+1

log = of Ly for those indices n for
"

Let us neglect the terms

which either dy or du41 exceeds 4 log ps,*) and denote the remaining
sum by Ln'; evidently Gy > ¢ Ln > ¢ Ln’. As according to (7)
ook
Gn
further using the identity

< 1, and we have for | x| < 1 |log (1 4+ %) | > ¢, | %],

4 M=i+dvl+l"—*d»__dﬁ+ldu
W o P P
we obtain, by putting

. | dni1 —dn ,  Oni1dn
15 Dy= 2 /] "L Rn= ¥ ————
(1%) " tugs N Pn = tny1a N Pn®

(where 2’ denotes that the summation is extended only over
such indices # for which both dy and ds+1 are < A log p») we obtain

(16) Ly > ¢; (DN — RN)
Now we have
o0
(17) Ry<i X %mw"’f,".
but1S N k=2

Thus if we prove Dn > cglog N, Gy > ¢4 log N follows. To estimate
Dy we need the following lemma.

Lemma 1. The number of solutionsof dy = a, du41 = 8, pu < N,
does not exceed

cgN | 1
i8) - —-!--H(l -) a (1+_).
(18) log® N p/a T P/ plats 12
In other words, the number of such primes =< N for which both
p + a and p + a + b are also primes, does not exceed (i8). This

lemma can be proved easily by the method of Vicco Brun (l.c.)
by applying a ,.triple sieve”. We need further

Lemma 2, Let us denote

(19) W (m) =£,,('+%)'

*) The value of the constant X shall be determined later on.
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We have

2
(20) Asm£A+BW(m)g%B+I<;g(A+B)+ .

Proof of Lemma 2. Clearly
X Wm= X ln@)| ¥y
AsSms A+B dsa+B @ 4gasa+n
and thus

r Wms=s 2 1(§+1)<§3—s+log(.4+3)+l.
ASmsS A+B “dsa+pd\d 6

Now we prove, using Lemmas 1 and 2, the following

Lemma 3. Let ¢, A and M denote positive constants, and let
denote a positive integer, £ = k, (M, &, 3). The number of indices #,
for which dsw < AM . (kR — 1), dw+1 < AM (k- - 1) further

eMik—1) < py < eMk and |dnt1 —du| < E&—:E

are valid, does not exceed

Crp - £ . eMk
ME

Proof of Lemma 3. The number of primes p» for which
eM (A—1) < p,, < eMk, further dw = a and dn+1 = b can be estimated
by Lemma 1. If this number is denoted by Zas, we have

2n [ . (“_&g—, W (@) W (a + b).

If Zx denotes the number of primes satisfying all conditions of
Lemma 3, we obtain

(22) Zy < ) Zap.
a<AM(k-1), b <AM(k-1)
&M
e 3
Using Lemma 2 we obtain
(23) 2y < Ao

for k> ky (M, €, 2).
Let us proceed now to the proof of our thecorem. According to
(7) if we choose
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4
M > log —£§
we have at least mpnmes in theinterval(eM(k-1), eMk) As we have
z dn < eMk the number of primes pn in (eM(:-1), eMk)

M(k-1) _ p, o Mk

for which dw = AM (k—1), does not exceed ==+, and we have

M (k -1)
the same estimate for the number of primes py in the same in-
terval for which dy41 = AM (k — 1). Thus for at least

(9_4 __i)ﬂ‘;f
2 A/ Mk
primes in  (eM(k-1), ¢Mk) we have both dy < AM (k—-1) and

dui1 < AM (k—1). According to (23) the number of primes in
(eM(k-1), eME) for which du < AM (k- 1), dui1 < AM (k—1) and

M£k
| dnt1 —dn | < %}E does not exceed c"';;k . Let us choose now 4=
= . and & Cy . We obtain, that for at least 45— primes in
A ~ 8Mc (o 4Mk

(eM(k-1), eME) we have dn < AM (k—1), dws1 < AM (k—1), and

Idn+1 " dn|>."?.}_e_ﬂ£

Thus from (15) we obtain

(24) Dy> = D L3 .| B S  BE PR 199 1)

3
Ko<k < L‘*"O;N M) <po< MM P ko <h< l—oifN

As it has been remarked above, this proves our theorem.

§ 3. In connection with the above estimations there arises the
question, how many times it occurs for pn =< N that dn+1 = dn,
or more gencrally that du+1 = ds + h, where A is a fixed integer
(positive, negative or zero). In this direction we prove

Theorem 2. The number of solutions of gy < N, dnt1 =dn + A
does not exceed

(25)
Proof of theorem 2. We have according to Lemma |
(26) Hy = > 1< 5 Wim W mth).

puesNdyyy=dath 108 N m< (log N)'h
dn< (logN)')s
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Applying the inequality of CaucHY-ScHWARZ, we obtain

@7 HN<]’£,VN £ Wam)
o8 ms (log N)'fat+ b

Now we need the following simple
Lemma 4.

4
(28) E; W2 (m) < c 4.

"

Proof of Lemma 4. We have

l!
gty it )
p=s(l+g) oo\ T P 2p) T
?
and thus
Vid) | V(d
I.'W’(m):,cuz' H(I-I- )~ 1,):2 T AT i
m=1 pim 2 d s A i—1 d?

where V (d) is the number of different prime factors of d. Denoting
by 7 (d) the number of divisors of 4 we have

2Vid) < 1 (d)
and thus

Thus we obtain

A Ccourph
3 i L
mle (m) < 36 A
which proves Lemma 4. As dy Jf (log N)*hcan evidently occur I 7
not more than N (log N)-* times, as it is seen from 2 ds < N,
Theorem 2 is proved. el

§ 4. We prove still some results concerning the sequence s,
Recently W. SIERPINSKI proved the following theorem: ?)

For every positive integer X there exist an infinity of primes p
with the property that all the numbers p + %, 2= 1,2,... K are
composite i.e. that there are an infinity of primes which are
“*isolated”” from both sides from the next prime by an interval of
arbitrary large length. Evidently the theorem of SIERPINSKI is

equivalent tosii:& El; =+ d,_.l.ﬁ = (0. The proof given by SIERPINSKI
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is based on the application of the theorem of DIrICHLET, that in
every arithmetic progression Dx +r, x =1,2,... D,y = | there
are an infinity of primes. In what follows we shall show that a
theorem which is stronger than that of SIERPRINSKI can be proved
in an elementary way by using only BRUN’s method. We shall
prove

Theorem 3. For any integer N and any r < ¢4/log N there isa
prime p» =< N for which

dapj 2t =0, 5,2, . (r— 1)

¢y5 log N
7

Proof of theorem 3., We need the following

Lemma 5.

A 1-A
(29) gl 24

N <“__1)2Af0r0<2<1.

We have namely

4 Wm A 1 1 A-x 4
2 =2 H-A(E_)él—-—zgfldlmg

m=1 mA d ld S%r
Al-A (1 ) 3A1+2
sg—a@tl<za—n
which proves Lemma 5. Now we prove
Lemma 6.
(30) D 1 e NV

pzn @A S AT —2) (log Mi+x

We apply the theorem of Vicco BRUN mentioned in § 1 (see (3)).
We obtain using also (7)
] 1
31 E == 2
S, 9 s T
tas N
cN W(k) cg N

Thus by Lemma 5 we obtain from (31)
1 3¢ N (log N)1-2 N

1
+ Tog vy

32) e A STog N AT —4) — X(1 —7) (log N)i+¥

which proves Lemma 6. Now Theorem 3 can be deduced easily.
Let us put
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r-1 1
(33 M~ X ;
) i=1 ‘\/duﬂ‘

We have by Lemma 6 with 1 = }.

1 deg N . 7
34 Z Wsr X 18 .
4) SNt o N/ (log N)h
Thus if we put Min 85 = AP we obtain from (34) using

pas N-r+1
(7) that
Cin ¥

35 0
#9) 2 Vg N
Thus for an appropriate # we have
(36) dnyj > 28 l:’,gN for j=0,1,...(r —1),

which proves Theorem 3. For » = 2 this theorem states, that there
exists a constant C such that for every N therc is a prime p < N
for which all the numbers p+ &, % =1,2 ... [ClogN] are
composite. This can be formulated also by saying, that the first
prime having the property required by the theorem of SIERPINSKI,
i.e. for which all numbers p + %, 2 =1,2,.., K are composite,
does not exceed (K.

We still add some remarks on l.emma 6. As it has been used

before, for more than lo;-% primes p» = N we haved, < Klog N,

and thus we obtain

1 cia N
47 BT T TR

This means that the order of magnitude of the sum on the left of
(30) given by Lemma 6 is exact. Now we can make the parameter 1
in this sum depend on N, for example we may choose
R

loglog N’

We obtain from Lemma 6 that

A=

1 _ 6N loglog N
i< lgN

For the sum on the left of (38) we can give only the lower estimate

(38)

1 Cyg N
39 Y >
(39) meydn  (log N)®
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As amatter of fact, if we could prove

1 cN yp (N)
L i i
P-sz: nds = (logN)*
with 9 (N) - o, it would follow that lim —2* —0, but at
n-rc0 108 %

present we are unable to prove anything of this type. To give some
idea for the random distribution of the sequence ds, we add a tabel
giving the values of dx for ps < 4397, (n = 2, 3,...599).

Budapest, January 30, 1949.
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. 599.

Table of the sequence d, for n = 2,3, ..
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