
ON THE STRONG LAW OF LARGE NUMBERS

In the present note f(x), - - <x < oo, will denote a function satisfying the
following conditions : (1) f(x+1) =f(x), (2) fof(x)=0, fof(x) 2 =1 . By nl<n2
< . . . we shall denote an arbitrary sequence satisfying nk+i/nk > c > 1, and
by Sn (f) the nth partial sum of the Fourier series of f(x) .

In a recent paper Kac, Salem, and Zygmund(1) prove (among others) that
if for some e > 0

(1)

then for almost all x

(2)
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.1 0
(f(x) - p(Jl) 2 = 0 ((log n)f ~,

N
lim 1( 1: f(nkx)) = 0,
N-- N k_l

or roughly speaking the strong law of large numbers holds for f(nkx) (in fact
the authors prove that Ef(nkx)/k converges almost everywhere) .

The question was raised whether (2) holds for any f(x) . This was known
for the case nk=2k( 2) . In the present paper it is shown that this is not the
case . In fact we prove the following theorem .

THEOREM 1 . There exists an f(x) and a sequence nk so that for almost all x

(3)

	

lim sup1 ( i f(n,x)) _ ~ .
N--- N k_1

Further we prove the following sharpening of the result of Kac-Salem-
Zygmund

THEOREM 2 . A ssume that for some E>0

(4)

	

fo 1 (f(x) - ~n(f)) 2 = 0(	1	 ,(((log log n) 2+e)

then (2) holds .

By a slight modification of the construction of the f (x) of Theorem 1 it is
easy to construct an f(x) and a sequence nk for which (3) holds and for which
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( 1) Trans. Amer. Math. Soc . vol . 63 (1948) pp . 235-243 .
(2 ) This result is due to Raikov . See F . Riesz, Comment . Math . Helv . vol . (17) (1944) p.

223 .
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(5)

	

fp (Í(x) - 0n(í))2 < (log log log n)°

There is clearly a gap between (4) and (5) . It seems probable that, in Theorem
2, (4) can be replaced by 1/(log log log n)°1, but much sharper methods would
be needed than used here .

The following problem also seems of some interest : By an easy modifica-
tion in the construction of the f(x) of Theorem 1 we can show the existence
of an f(x) and a sequence nk, so that for almost all x

1

	

N
(6)

	

lim sup	
(tog tog N)112-e

	

f(nkx)
N-

	

_ ~ .
N- N( k-1

On the other hand we can show that for almost all x
1

	

N

	

\\
(7)

	

lim N (lOg	N)1/2+e ( E f(nkx)J = 0 .

Again there is a gap between (6) and (7) . (6) seems to give the right order
of magnitude, but I can not prove this .

One final remark . The f(x) of Theorem i is unbounded . The possibility
that (2) holds for all bounded functions f(x) remains open .

Proof of Theorem 1 . Let u k , vk, and Ak tend to infinity sufficiently fast
(their growth will be specified later) . r.(x) denotes the mth Rademacher
function (3) . Put

(8)
00

	

'km

	

vm(x)
f(x) -

	

m= +1 (A7e(vk - uk)) 112 ~

Clearly the series for f(x) converges almost everywhere and fóf(x) =0,
fof(x) 2 =1 . Now we define the nk . Put jk= [02] . Denote by I=kl the interval

((2t - i)vk, (2t - 1)v k + I(
k)

),

	

t = 1, 2, .

	

, ,% k,

where l ($) =21,T, and hk) is very large compared to vk-1, Ak_1, ljA-1 and will be
specified later. If we choose vk>ljk> then the 1, kl don't overlap . The nk are
the integers of the form 2- where mCl,kl, k=1, 2, • • • ; t,=1, 2, • • • , jk .

Order the l's according to their size . Clearly each l is greater than the sum
of all previous l's. Thus a simple argument shows that to prove (3) it will be
sufficient to show that for every fixed c and almost all x

1

	

\
(9)

	

lim SUP - hkj ( E(k f(2-x) / > c,

	

k = 1, 2, . . . ; t = 1 , 2 , . . . j k.
t

	

mCl

	

/t

( 1 ) Instead of r.(x) I originally used cos 2°áx. The advantage of using Rademacher functions
was pointed out to me by Kac .



1949]

	

ON THE STRONG LAW OF LARGE NUMBERS

	

53

(Since if m,+,>2m,., and for every c lim sup (1/(m,+,-m,)) Y-mr+Ia .u >c, then
lim sup (1/u) Ek= lak= - . Let now m, be the sum of the r first l's, then clearly
(3) is a consequence of (9) .)

Hence it will suffice to show that for every e and sufficiently large k the
measure of the set in x satisfying at least one of the inequalities

(10)

	

I(k)) C m~(k)f(2mx) / > c,
111

	

t - 1,2, . . . , ik,

is greater than 1-e .
Put

where
vk

	

rm(x)
f1(X) = Z

k-1 V.

Z

	

rm(x)

	

f,(X) _ Z
s=1 m=us--1 (As(vs - us)) 1/2

	

m-uk-}-1 (Ak(uk - 71k)) 1 / 2

f3 (x) _
s>k m=us+l

A simple calculation shows that

(

	

lÉk)

	

y11 )

	

f2(2mx)
-		) + 1:1 + 1: 2

mClt(k)

	

(Ak(vk
	 -	

uk))1/2

	

m(x

_ Z + Y1 + E2

where m runs in the interval

(uk + (21 - 1)vk + ltk), 2tvk)

and
jt(k)

	

it
(k)

- a
~1

-

	

(Ak(vk - ZGk))1/2
r,-,(x),

	

Y = uk + (2t - 1)vk + I t ) ,

lt(k)

	

i(k) - a
Lr2 = E

(`4k(vk -
uk))1/2 r2tvk+a(x) .

Now Erm(x) is the sum of

f(x) = f1(x) T f2(x) + f3(x)

rm(x)

(A,(vs - us))1/2

vk - uk - 1<
1k)

> vk/2

Rademacher functions (we choose vk>2(uk+lá k))) . It is well known(4) that
(4) See, for example, P. Erdös, Ann . of Math . vol . 43 (1942) p . 420, formula (0 .7) . Inci-

dentally the formula in question should read c&l1n)e -2x2/n<Pr (A,(x)) <c2(x1jn)e2x2/n
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the measure of the set in x for which

E rm(x) > 4c(Ak) 112 (vk) 1/2

is greater than

for sufficiently large Ak . Thus the measure of the set in x for which
l (k)

(12)

	

(Ak(vk t Uk))1/2 E r.(x) > 4c1 t k)

is greater than eAk . Clearly for all x

2(li k)) z

	

4(ltk) ) z
(13)

	

~1 + ~ z <
(A k (vk - uk))112 G (yk)112 G 1

if we choose vk> 16(1ík) ) 4. Thus finally from (11), (12),
/

and (13) the measure of
the set in x for which

(14)

	

f2(2mx) > 4clt t~ ) - 1 > 3clt ))
MClt ( k )

is greater than e-Ak .

If vk>21(k) for all t, then the functions

E f2(2mx)

	

t = 1 , 2 , . .-

	

j k,
mClt (k)

are independent (since the same r .(x) does not appear in two different sums) .
Thus the measure of the set in x for which one of the jk inequalities

(15)

	

m

	

k) f2(2 x) > Mt ),

holds, .is greater than
2

	

3
(16)

	

1 - (1 - 11y)z > 1 - E/2(y = eAk, z = OA;) .

Further if 1 ( k) > vk-,

1

J

	

~, fl( 2mx)) 2 G vk
2

	

2
- 1 (l t k) + vk-1) G 2vk-11í k)

p

	

mClt ( k )

since only the r-'s with m<_lí k) +Vk_1 occur and the coefficients of all of them
are not greater than vk-1 . Thus from Tchebychef's inequality we obtain that
the measure of the set in x for which one of the jk inequalities

2
-32c2Ak

	

-Ak
CIA ke

	

> e

m

	

(k)
f1(2 x) > c1 t ,

MCI, (k)

t=1,2, . . .,jk,

t= 1,2, . . .,jk,
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holds is less than
2

	

2
2vk-1

	

4vk-1

	

E

(18)

	

C21(k) < c (k)
<
4

, I > 16vk_ 1/cE .

Finally we have by a simple computation

f 1

	

f3(2mx))2< 4(ltk))2

	

1 < 1
0 -Clt(k>

	

r>k Air

if Ak+,,

	

are sufficiently large . Thus the measure of the set in x for which
one of the inequalities

k)
(19)

	

E f3(2
m
x) > cl t

(

	

i = 1, 2, . . . , jk ,
mClt (k)

holds is less than
~k

	

1

	

E

( 20 )

	

E (chk> )2
< 4

Thus finally from (15), (16), (17), (18), (19), and (20) we obtain (10) and this
completes the proof of Theorem 1 .

Sketch of the Proof of Theorem 2 . Put j -i = r, then n;/na > cr . Denote
by a,, bl, d2, b2,

	

the Fourier coefficients of f(x) . By (4) we evidently have

J
l f(nax)f(njx) _

	

(au.av + bu.b„) <_
( .0

Z a2k

	

ak 1 1/2
0

	

rziu=njv

	

k=1

	

k>c*

Hence

f
1 ~ z

Ef(nkx) 1 2 = 0C

	

N2

o

	

z

	

((log

N) 1+e/2 '

or the measure of the set M(z, N, A) in x for which

(22)

z+N
f(nkx)

z

M 2

	

2\ 1/2
-I- Z bk

	

bk'
k=1

	

k>cr

> A .N

is less than
(21)

	

c/A 2(log N)1+E / 2 .

Consider the sets

M(1, 2n, 8) ; M(2% 2n-1 , 28/2 2 ) ;

M(2n, 2n-2 , 48/3% M(2n + 2n-1 , 2n-2 , 45/3 2 ) v
. . .

C1

(log r)1+Ei2
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There are 2k-1 sets of order k, that is, sets of the form
(23)

	

M(2n + Mn-k, 2n-k, 62 7, /(k + 1 ) 2 ), 0

	

u < 2k-1 .

From (21) it follows that the measure of any set of order k does not exceed
c(k + 1) 4/S 222k(n - k) 1+c/2

Thus the measure of all the sets in (23) is less than c(k+1) 4/5 22k(n-k) 1 + er 2 '

and the measure of all the sets M n in (22) does not exceed

Thus

(24)

	

Mn < .
n=1

But if x does not belong to any of the sets (22) we have by a simple argu-
ment for all 2n<m<2n+ 1 (every m is the sum of powers of 2)

(25)
m

f(nkx)
k=1

n

	

c(k + 1)4

	

cl

k=o 6 22k(n - k)1+e/2 < 62n1+,12

Stn

	

Stn

	

Stn
< 621 -F 22 + 32 + . . . +

k2
+ . . . < 262n <_ 26m .

(24) and (25) clearly prove theorem 2( 5 ) .

SYRACUSE UNIVERSITY,
SYRACUSE, N . Y.

( 1) The method used here is due to Hobson-Plancherel-Rademacher-Menchof . (See, for
example, Rademacher, Math . Ann . Vol. 87 (1922) p . 117-121 .)


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

