ON THE STRONG LAW OF LARGE NUMBERS

BY
P. ERD{S

In the present note f(x), — w <x < », will denote a function satisfving the
following conditions: (1) flx+1) =7(x), (2) [of(x) =0, [ofixii=1, By m<mn.
< + -+ we shall denote an arbitrary sequence satisfving maa/m>e>1, and
by Su(f) the nth partial sum of the Fourier series of f(x),

In a recent paper Kac, Salem, and Zygmund(?) prove {among others) that
if for some e>0

) [, ¢ = oo = 05",

then for almost all x

(2) lim —_( b :»:.-.-x}) =0,

N—u N

or roughly speaking the strong law of large numbers holds for f{nee) (in fact
the authers prove that 3 [(mx)/k converges almost everywhere).

The question was raised whether (2) holds for any f{x). This was known
for the case np=2%%), In the present paper it is shown that this is not the
case. In fact we prove the following theorem.

Turorem 1. There exisls an _J" (x) and a sequence nx so that for almast all x

(3 hm sup — z: _,l"{m:c}) = 005

kol

Further we prove the following sharpening of the result of Kac-Safem-
Zygmund:

TaeoreM 2. 4 ssume that for some >0

I X 1
@) [ e = sirr=o0 (———“GE = m}%).
then (2} holds.

By a slight modification of the construction of the f{x) of Theorem 1 it is
easy to construct an f(x) and a sequence #e for which (3) helds and for which
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1
= Y. R
) [ ) ~ ey < g
There is clearly a gap between (4) and (5). It seems probable that, in Theorem
2, (4) can be replaced by 1/(log log log n)%, but much sharper methods would
be needed than used here,
The following problem also seems of some interest: By an easy modifica-
tion in the construction of the f(x) of Theorem 1 we can show the existence
of an f{x) and a sequence my, so that for almost all x

1 ¥
(6) lhﬂ-.lfp N{log log lefl—-—c( LZ_‘; ‘r(ﬂ.x}) e
On the other hand we can show that for almost all »
T lim ———m =
0 tim e ﬂ,m,( > .f(m:}) 0.

Again there is a gap between (6) and (7). (6) seems to give the right order
of magnitude, but I can not prove this.

One final remark. The f{x) of Theorem 1 is unbounded. The possibility
that (2} holds for all bounded functions f{x) remains open.

Proof of Theorem 1. Let g, v, and A, tend to infinity sufficiently fast
(their growth will be specified later). rmlx) denotes the mth Rademacher
function(?). Put

- rm n-_.(x}
8 = == T i o
@ /=) E --Zn:ar: (Aslzs — m))1? E A

Clearly the series for f{x) converges almost evervwhere and [ifix)=0,
Jif(x)*=1. Now we define the n:. Put ji= [¢4]. Denote by I¥ the interval

((2 = Dow, (20— Vow 4+ 1, t=1,2,- F

where 1™ =21®, and I is very large compared to vea, Aai, I_ﬁf:, . and will he
specified later. If we choose ve>I then the IfY don't overlap. The m are
the integers of the form 2™ where mCI; =12, L O |

Order the I's according to their size. Clearly each hs greater tha.n the sum
of all previous 's. Thus a simple arpument shows that to prove (3) it will be
sufficient to show that for every fixed ¢ and almost all »

1
(9) iimsup—ﬁ,-,-( mﬂi'x}).‘.‘-t, kw1, 2, ---34=12---,7u

{*} Instend of ra() 1 originally used cos 2=2. The advantage of using Rulunachcrl‘nnﬂm
was painted out to me by Kae.
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(Since if .1 >2m,, and for every ¢ lim sup (1/(mea—m.)) D mta, >¢, then
lim sup (1,/4) 3 b 1a5= . Let now m, be the sum of the 7 first I's, then clearly
(3) iz a consequence of (9).)

Hence it will suffice to show that for every e and sufficiently large & the
measure of the set in x satisfying at least one of the inequalities

(10) '%(mg;mﬂzmx}) >, b=1,2c00 i,

is greater than 1 —e,
Put

flz) = filx) + falx) + falx)
where

TS S R S

=l el ':.r'] .{5‘. = f‘t]}”: , LR | (4 I:{ﬂk = f-'h}:]i'r.’,
B *s rulx)
fila) = g}% m-%;—l (Aol — )12 ‘

A simple calculation shows that

1k
t

(11) mczhmfsiz"w} = m 2ral)+ it T
—= E -+ EI + Z:

where m runs in the interval
(ae + (2 — D + IE”. Qi)
and

!!‘1#: tk]

3 ' —a . 5
E'.I. =~ :‘5_:; mﬁ—a(ﬂ- yo= g + (3 — 1} + 1(: :

158 (8

i; —
P ) Fitoysal X).

a1 [Ax(ve — 102))202
Now Erm{x} is the sum of
0 — Hy — I:u > mﬂ!

Rademacher functions (we choose p,> Ha +07)). It is well known(4) that

(%) See, for example, P. Erdbs, Ann. of Math. vol. 43 (1942) p. 420, formula (0.7}, Inci-
dentally the formula in question should read o (8 /nle %= <Pr (A (x)) <ealat/n)etn,
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the measure of the set in x for which
2 ral®) > deld ) o{p)V?

is greater than
2

E
—azeily —aly
&y d e >

for sufficiently large As. Thus the measure of the set in x for which

1}
I

) 2 = e —

is greater than e, Clearly for all x

3 ra(®) > et

tk}, 2 )1

20k ) 4 )
(13) | a4 2al < (Aaloe — w2))2  (p)ti?

if we choose vy > 16(/")%. Thus finally from (11), (12), and (13) the measure of
the set in 2 for which

(14) > f@%0) > aa” — 1> 3al,”
mi Ly
is greater than 4.
If v, >21* for all 1, then the functions
gw_ﬁ{z“x}. E= 1 2.0 v gy
m [}

are independent (since the same r.(x) does not appear in two different sums).
Thus the measure of the set in x for which one of the j: inequalities

(15) wszz{zmm:l > 3, b=1,2 044, u
]

holds, is greater than

(16) 1— (1 — L/y)e > 1 — ¢/2(y = e&, 5 = ehi).
Further if Y >0y

()

1 ) )
f ( §ﬂ:f1{2mx}}= <oialls + iey) < ek

since only the ra's with m =10, occur and the coefficients of all of them
are not greater than vy, Thus from Tchebychef's inequality we obtain that
the measure of the set in x for which one of the j, inequalities

e ) 5
(17) m;z;mflfz T PRy o Wy
&
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holds is less than
Eﬂ-l 4'“»—4

(18) Eg.;ﬁ- g.m-<~.t$“:=-1ﬁv: o/ ce.
Finally we have by a simple computation

L l(.?;.m ,.r.[:'.:))’-: 4(:?’}'§ ;1- <1

if gy, + - - are sufficiently large. Thus the measure of the set in x for which
one of the inequalities

(19) “); 12" > di, T W
holds is less than
(20) Z: (d.“‘}* :

Thus finally from (15), (16), (17), (18), {19],31111 (20) we obtain (10) and this
completes the proof of Theorem 1.

Sketch of the Proof of Theorem 2. Put j—i=r, then n;/n;>¢. Denote
by ai, by, aa, by, - - - the Fourier coefficients of f(x). By (4) we evidently have

Lj.fl:mw}fl:ﬂfx] = E (auay 4+ bub,) = ( Eﬂi E )m

U = =Tl

] 8 '”'l‘ o
b &) el
- E’nze A (log

2
j‘.‘ ( 'g.f{n#}l 3 = 0(@%;;‘—5).

or the measure of the set Mz, N, 4) in x for which

(wex) | > AN
is less than
(21) ¢/ A(log N)vi2,
Consider the sets

M(1, 2%, 8); M(2%, 2=, 25/2%;

= M(2%, 21, 43/37), M(2~ + 21, 21, 43/3%); . .
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There are 25 sets of order &, that is, sets of the form

(23) M(2* 4+ 2024 22 28 /(R + 1)¥), 0. 5 < 201,

From (21) it follows that the measure of anv set of order & does not exceed
ek -+ 1)4/822%%(py — E)Hes,

Thus the measure of all the sets in (23) is less than e(k+1)4/8%2%(n — &) t+e/2,
and the measure of all the'sets A7, in (22) does not excead

i c(hk 4 1) £

=t G°2%(n = Eytteis = St

Thus

(24) M, < e,
me=]
But il x does not belong to any of the sets (22) we have by a simple argu-
ment for all 2» =m <2+ (every m is the sum of powers of 2)
e B2 &2 &2
@) | som| <ot m g B

o
E=1 2*

=+ s o <2520 = 2.

{24) and (25) clearly prove theorem 2(5).

Syracuse [TNIVERSITY,
Symracuse, N, Y,

(%} The method used here is due to Hobson-Plancherel- Rademacher-Menchof. (See, for
example, Rademacher, Math. Ann. vol. 87 {1922} p. 117-121.)
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