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ON THE CONVERSE OF FERMAT'S THEOREM
P. Erpés, University of Illinois

Following Lehmer we shall call an integer n a pseudoprime if 2"=2 (mod n)
and # is not a prime. The smallest pseudoprime is 341 =11.31. Recently Sierpin-
ski! gave a very simple proof that there are infinitely many pseudoprimes, by
proving that if 7 is a pseudoprime then 2"—1 is also a pseudoprime. Lehmer?®
proved that there exist infinitely many pseudoprimes n with v(n) =3, where
v(n) denotes the number of different prime factors of #. In the present note we
prove the following theorem.

THEOREM. For every k there exist infinitely many squarefree pseudoprimes with
v(n) =k.

First we repeat Lehmer's proof® that there are infinitely many pseudo-
primes z with v(n) =2. It is well known* that for every m>6 both 2"—1 and
2m41 have a primitive prime factor; that is, there exist primes  and g such
that

2" — 1 =0 (mod p), 2'—1#0(modp), forlsi<m;
2m L 1=0(modgq), 2!4+1#0(modg) forl=<I!<m

It is easy to see that p-g is a pseudoprime. In fact we have p=g=1 (mod 2m),
2%=1 (mod p-¢), thus

2r0—1 gz (D (e=1).2p-1. 2¢-1 = | (mod ?Q’).

Also it is immediate that to different values of # correspond different values of
P-gq, which proves the theorem for k=2.

The proof of the general case will be very similar to that of Lehmer. We use
induction on k. Let #,<#,< - - - be an infinite sequence of pseudoprimes with
v(n;) =k —1. Let p; be one of the primitive prime factors of 2% —1. We claim that
pi-miis a pseudoprime. In fact, by definition, 2% =1 (mod p;-n,), also 27i~1=1
(mod p;). Further, since p;—1=0 (mod (7;—1)), we have 27"1=1 (mod #;) and
finally 2% '=1 (mod #;). Thus

1 Colloquium Math., vol. 1 (1947), p. 9.

3 This MoNTHLY, vol. 56 (1949) p. 306.

* This MoNTHLY, vol. 43 (1936), pp. 347-336.

4 Bang, Tiddsskrift for Mat, 1886, pp. 130-137. See Also Birkhoff-Vandiver, Annals of Math.,
1904.
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2nini—l = 2(ni—1}(2i-1).Qni~1.2pi~1 = 1| (mod ?iﬂ-)

Also pi>ny, since p;=1 (mod (m;—1)) and 5, is not a prime. Thus p;-n; is
squarefree, and v(p: n:) =k, and all the integers p;-n; are different; this com-
pletes the proof of the theorem.

Following Lehmer we call # an absolute pseudoprime if ¢*=a¢ (mod #) for
every ¢ prime to #. The smallest absolute pseudoprime is 561. It seems very dif-
ficult to determine whether there are infinitely many absolute pseudoprimes. A
similar question is whether there exist any composite numbers # with n—1=0
(mod ¢(n)).

Two further questions are: Are there integers # so that 2*—1 has more than
k primitive prime factors? Are there infinitely many primes p for which 22 —1 is
composite? The smallest such prime is 11.

Denote by f(x) the number of pseudoprimes not exceeding ¢. I can prove
that

(1) cirlog x < f(x) < 62

(log )*

for every k& if x is sufficiently large. In other words, the number of pseudoprimes
is considerably smaller than the number of primes. The proof of (1) (second in-
equality) is complicated and we do not discuss it here.




