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1. The present note contains some disconnected
remarks on diophatine approximations.

First we collect a few well-known results about
continued fractions, which we shall use later!. Let « be
an irrational number, ¢, < ¢:<...be the sequence of
the denominators of its convergents. For almost all « we
have for k> ko (e), g441 < i (log ¢z)'*¢.  Thus if n is large

and qrgn<gr+] we havc qr> a??:z*)’i_—r—!. Fl.ll'ther for
almost all «
R R i ;
g (loggy ~|° ga,< G’ (x)

the second inequality is true for all «.
Also if [a—afb|< % b* and ¢, <b < G4y, then b=
o (mod ¢;). Hence if

{ﬁ > 2n,m < n then m=o(mod g,), (2)

where ¢, <7< ¢,;, and we denote by {«] the distance
of u from the nearest integer. It is easy to obtain from
(1) that for almost all « and m > m, (a)

F;?'}' < m(log m)'*. (3)

A theorem of Behnke? states that for almost all «
(g, <N < Grs1)

1. The results in question can all be found in Koksma,
Diophantische Approximation, Ergebnisseder Math. 4 (4).
2. Hamburgische Abhandlengen, 3 (1924), p. 289.
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Z {—ﬂ;;—} < ¢, nlog n. (4)
m=1

Denote by N, (g, b) the number of integers m < n for
which a<na—[na]<b. A theorem of Khintchine-
Ostrowsky! states that

(b—a) n—c, (log n)'** < N, (a, b) < (b—a) n+¢; (log n)'*",

(5)
where ¢, and ¢; are independent of a, b and n and depend
only on a and e.

2. Denote by d(n) the number of divisors of n, by
1, (n) the number of representationsof » as the sum of two
squares and by r,(n) the number of representations
of n as the sum of four squares. Walfisz’ proved,
sharpening previous results of Chowlas, that for almost all «

S, d(m) évine = O(n'/? (log n)!+*) (6)
S, ra(m) e27ime = O(n'/? (log n)'+) (7)
S 14(m) 7 = O(n (log n)?*+). (8)

By a slight modification of their argument we obtain that
for almost all «

> d(m) ¢ = O(nklog n) (9)

m=1

1. Khintchine, Math. Leitschrift, 18 (1923), p. 297-300. See also
Ostrowsky, Hamburgische Abhandlungen, 1 (1922), p. 95.

2. Math. Zeitschrift, 35 (1935), P- 774778

3. Ibid, 33 (1935), p. 544-563.
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Z ry(m) €*™* = O(nilog n) (r0)

m=1

"

z rs(m) &€m"e = O(n? (log n)?). (11)

m=1
(9), (10) and (11) were proved by Chowla® in case « has
bounded partial fractions inits continued fraction develop-
ment. Butit iswell known that these «’s have measure o.
It will suffice to prove (g), the proof of (10) and (i1)
follows the same pattern.

n
Z d'(m‘l e?wimn____ Z ezﬂaba

m=1 ab<n
8‘3 ﬂ%
— z Z g?miaba _ Z e2niata, (12)
n=1 a<b<u/n a=1
Now clearly for every irrational number «
2winba Cy Cs
[ < — L e
] 2 ] sindra  {dal (13)
a<b<m/a

Also trivially

<3¥- (14)

Z e'.’:rl'nba

a<b<n/la
Put ¢, < n'/*< q,+,. We have from (12), (13), (14)
and (3)

- 2minia - _-l_ P ..j.__, n 1

],Zld(m) ¢ ]< _Z P +me( T | ,-a-)+0(n=)
- ;i'lr—;ll

< ¢sn* log ”+Z- (15)

The dash indicates that the summation is extended
over the a=o0(mod g¢,).

1. Ihid., 33 (1935), p- 544-563.
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Now we estimate 3’. As stated in the introdustion
¢, > n3/ log n)'**. We distinguish two cases. In case
I we have
n3/(log n)'** < ¢, < (n/log n)%. (16)
From (1) we evidently have that for £ < (log n)?
{k ga} =k{ge | Thus from (15), (16) and (2)

ST = 2 gn <tles e

E < (log #)? b < log n)*

1

T end e =
X z s (log n) Z p o(ntlog n).

E < (log w)2 k< (log #)2
(17)

In case II, ¢,> (_l_o_g"'n_)”' We evidently have

from (14)

’< ? < (nlogn i l:a(nvz log n).
ka. g A g 1)

b€ (log )3 q’ k< (log n)
(18)

(9) clearly follows from (15), (17) and (18).
3. Spencer' proved that for almost all «

> mi:na = 0( (log n)? ). (19)

m=1

He remarks that (19) is in a sense best possible since
by a theorem of Hardy-Littlewood* we have for all

irrational o
i. Proc. (,‘ambridge Phil. Sve., 35 (1939), p. 521-547- In fact

Cosec mwra
————but it is easy to see that asymptoti-

Spencer considers Z
m=1

"
1

cally. this is the same as Z anma 7
= f
m=1

2. Bull. Calcutta Math. Soc., 20 (1930), p. 251-266.
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L

Z . T ¢; (log n)2.
m{ Ma !-

m=1

Spencer conjectured! that for almost all «

H

zﬂ mf:r? = (1+0(1)) (log n)2. (20)
We shall prove (20) and a few related results.
First we prove the following
LemMA.  For almest all « we have
5 {----ﬂ—;j—(mo( 1)) 2 7 log 1, (a1)
where in 3! the summation is extended over the m for which m < n

I
and — — <L 2n.
1"‘“}

We write

Z!ma‘ Z+z (22)

where in Z the summation is over all such m for which

1 n
(el < Tog 07
di
and in 22,
gy gty e W
2 Tma| ~ (logn) ™
We obtain by (5) by a simple argument (re-ordering
the terms in the summation) that

S =0+(1)) 5 (M)t (1-p0) =

k< Qog n)10/?
(140(1)) QZ E=(1+0(1))nlogn. (23)
&< "/ (log n)10/9

1. Oral communication,
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Next we estimatcz. Put 4 = QC-’E;“)—]Q We evi-

dently have from (5) and the fact that each summand in
s, is less than 2 n
5, <o (X0 D=4 0 ralE
(24)
(by (5) the number of terms ins; is less then g(log #7)'/?).
Now we have to estimate N,(o, 4)4+N,(1 -4, 1).
Let o <x< 1 be arbitrary. Denote by s, <v,< ... <
the integers < n for which x < v;«—[v;¢] < x41/2.n. Clearly
the numbers (2;~2,) a—[(2,—v,)a] all are eitherin (o 1/2.n)
orin (1—1/2.n, 1). Thus
N, (x, x+1/2.n) < N, (0, 1/2.0)+ N, (1—1/2.n, 1)+1,
or splitting (o, 4) and (1—4, 1) into intervals of length

;—RWC have N,(o, 4)+N,(1—4, 1) <
2 (log n)/3[ N, (0, 1/2.0)+N, (1—1/2.n, 1) }+2 (logn)'/%,

(25)
By what has been said in the introduction all the integers

m, for which T;I:;T >2n satisfy m =o(mod ¢,), where
g, <n< gyy1- We ilistinguish two cases.
Case I. ¢, >n/(log n)'/~
Then clearly

N, (o, 1/2.n)+ N, (1—1/2.n, 1) < (log n)'/2. (26)

Case II. ¢, <n/(log n)'/%
But then by (3)
I

{9a]
Thus if k.g,.a—[k.q,.«] is in (0, 1/2.n) or in (1-1/2.n, 1)
we have k < (log #)'?**.  Thus in case 11

< q,(log Q’.‘]H“" < ?z('og n)l,rz‘u.
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N,(o, 1/2.0)+N,(1—1/2.n, 1) < (loz m)"/*+e  (27)
Henee from (26), (27) and (<4) we obtain
s, =o(n log n). (28
The lemma now follows from (23) and (28).
Now we prove (20!. We have

i Z+Z (29)

X 1
where in z . R
5! (m a) =
. 1
and in Z s S Sl
i (Ma)

We obtain from (21) by partial summation that

; 2 logm i ‘
Y, =(rtori) 5 =—===(1+e(1)) (log m)* (30)
m < n
For the m in 5, we have as belore that m = o(mod ¢,),
hence from ¢, > n/(log n)'** we have

I
5 2 TS 2 BlaelS

&< n/a k< {logn)?

an

I _
tlog n)*+¢ z Fo(log n)t. (31)
=
(20) follows from (30) and (31).
Similarly we can prove that for almost all « and
a<a<

en'~“log n

L] I I
% me{ma! (1+o(1)) ————.

m=1
Before concluding the paper we state a few results
without proof :

I. For almost all «

X

e L L) log l°g s, (32)
$ {mal™

{8}



74 P. ERDOS

Thus in particular for almost all 4,

3

[

{ m
.l

1

Il M

diverges.

The proof of (32) is not difficult, it follows from (21)
without much difficulty.

II. Let f(n) be an increasing function of n for which

f(n) > (2+¢).n.log n and z 7(1’1—) converges. Then for
=1

almost all « and 7 > n, ()

Z oy <J@).

The proof of (II) is not quite simple and is not given
here. (I) and (II) were suggested to me by the beautiful
work of Khintchine! and Paul Levy? on continued
fractions.

1. Compasitio Math., 1 (1935), p. 381.
2. [fbid., 3 (1936}, p. 302.
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