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Denote by wi(n) the number of integers not exceeding n having exactly &
prime factors (multiple factors are counted only once). Hardy and Ramanu-
jan' proved that
(1) mn) < eln/log n)-(loglog n + ¢)*7/(k — 1)! < c(n/(loglog ).

(¢ denotes constants not necessarily the same.) Put x = [loglog ] Hardy® con-
jectured that

) m(n) > e(n/(loglog n)*) = e(n/log n)-2*~/(k — 1.

Pillai and I proved this conjecture (independently).® In fact we both proved
that forz — ¢! € k < z + ca! (the interval (z — ez}, # 4+ ¢x?) will be denoted
by I).

3) m(n) > c(n/(loglog n)?),
and Pillai proved that for & < ¢z

m(n) > c(n/log n) -2k — 1L
In the present paper we shall prove that for & in I
4 m(n) = (1 + o(1))-(n/log n)-2*"/(k — 1)L

I believe that a formula like (4) holds for & < ¢x, but the proof presents diffi-
culties which I have not yet been able t> overcome.

In the proof of (4) we will have to use the prime number theorem. It will be
relatively easy to prove (3) (Lemma 3), and the prime number theorem will not
be required for the proof of (3).

Throughout this paper # and r will denote integers in I. a®,i=1,2...
denotes the integers < n having exactly k prime factors (multiple factors are
counted only once). . (1 /af®) will indicate that the summation is extended
over t.

Lemyma 1.

1
> 2w > logn
kin I a;

1 Collected papers of S. Ramanujan, p. 262-275.
2 “Ramanujan” by G. H. Hardy, p. 56.
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Hardy and Ramanujan® prove that for large ¢ the number of integers < n,
for which the number of prime factors isin I,is > (1 — ¢)n. Let wsm =<,
clearly loglog m = loglog n 4+ 0 (1). Thus it easily follows that the number of
integers < m for which the number of prime factors is in (x — ezt z + cr') is
> (1 — e&m. Thus

Z Z '(k)>(l—e)z——>§logn

kinT t=nd

whieh proves the lemma.
LeMMma 2.

> ST
a}n ;t‘-!T Og n.
It follows from Lemma 1 that for some r

1 c
(5) Z — > “ilog n.
a; x
Further

1 1
*k+1) 2 (k+1:<2 (k) Eﬂ;&<(ﬂi+c)2{@-

Hence
1 1 ; 1
©®  Xoewm <@+a/k+DX m<@+e) U w.

We obtain from (5) and (6) by a simple computation that for every k < r

) £ " clogn
a® &

Now

1 L e

(* + l) Z a‘gr+1) = Eagr] Z pa .

The prime indicates that the summation is extended over the primes p with
p* < n/al”,p £ af”. Hence
(7) (r 4+ DY 1/a8" > 3 1/a{" (loglog (n/af"”") — clog z)
since, as is well known,

& < clogzx.

plﬂsrl p

Now

1
®) Z( {r)) loglog <r) 2 (r) (* — 2logx)

3 See .
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where the two primes indicate that the summation is extended over the
ﬂ;gr) < nl—l.fx’

2
(hence n/ai” > n"*). Also

' 1 = -1_ 1
9) = = 2. o 1 O(Eg log n).
Hence from (7}, (8) and (9)
1 1 1
(r +1) E i > (@ — clog ) Z 5 —0(-logn].
a; a; xr
Thus from (5)

1 z—eclogz 1 1 e 1
(10) Za—_?;ﬁ>-——?+1 Z@—O(Ezlogn)><l.—5§ Z‘Tﬂ.
We obtain from (5) and (10) by a simple computation that for k = r

a® 7 0g 7,

which completes the proof of the lemma.
Lemma 3.
m(n) > ¢ g

We evidently have for y < nt

i) (3)
"\y "\2y ylogn’
where m1(n/y) denotes the number of primes and powers of primes £ a/y with

p £ y, (m(n/2y) denotes the number of primes and their powers = (n/2y).
Thus from Lemma 2

o F # n n
(11) 2 ('ﬂ'z (W) - m (2a‘§k-—l))) R

where in 3., e " < 1n}, But it is easy to see that the sum (11) is not greater
than m.(n) (i.e. every a{ > n/2 can be written in at most one way in the form
af*V.p, where a7 < Int, n/al > p > n/2a¥V iep > nhp f a ™),

(and the a = n/2 do not oceur at all) which proves the lemma.

LEMMs 4.
1 1 1
T (1+0(a)) T

This follows from (6) and (10).
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LEmma 5.
1 a*
E@ = (1 + o)

Suppose that Lemma 5 is false. We can assume without loss of generality
that, for infinitely many n, there exists a k and a fixed ¢ > O such that

1 z*
2 > A+
(It will be clear from the proof that if € < 0, the argument remains unchanged.)

It follows from Lemma 4 by a simple calculation that there exists a ¢ = ¢(e)
such that for every k < r £ k + cat

a1 3¢\ z° e\
Ea‘(r) >(1 +I)?ﬁ'—’>(1 +'2')r_lo

Thus
ktezd 1 F ktezd P
E ZGE") >(1 +§) E ;!a
Put
kezd _r 2 t—-1
x e T
;k ha cllogn(logn =g = g(! = 1)!).
Thus we have
ktext

(12) e m > (1 gl )cl o

On the other hand, it follows from a result of Kac and myself* that for every
m > #° (8 > 0 an arbitrary number)

kt-czd

3 mm) = (1 + o(1))cim.

r=§k

Thus a simple calculation shows that
ktezh

;k 3 m _ Zs 4+ o(l))th + 0(_;‘ %) = (1 4+ o(1))c1 log n

which contradicts (12), and completes the proof of the lemma.
Now we introduce some notations. y = y{n), 31 = y:(n) - - - denote function
of n tending to infinity together with n in a manner which will be specified later

f,m) = II' »*

7] |m
where p® || m means that p® | m, p*** § mand the dash indicates that the product
1 Amer. Journal of Math., Vol. 62 (1940) p. 738-742.
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is extended over the p < n"?. By V,(m) we shall denote the number of prime
factors p > n"? of m (multiple factors counted only once). Now we prove

Lemma 6. The number of integers ¢ < n which do not satisfy

(13) (1—elogy = V@) =1+ o logy

is o(n/z?). (.e. s o(m(n)) by Lemma 3).

We denote the ¢ not satisfying (13) by b{”. To prove Lemma 6 we need
several lemmas.

LEMMA 7. The number N, of integers ai” = n for which

AC YT

is o(n/z%).
We evidently have
ap T4 s IT G- = T+ 11”
ra

wherein [T, » < n"*in J]”, " < niand in [J"” p* > 2l
Thus from (1)

HH < IIu (pa)c(n!p":h < exp (C?’L log n/yxi)
e

since by & well known result
2. log (p*)/p" < clogz.

P
For y = o(log n)

all3 1 slog n

e lin < exp (cn log n/yz?)
(the number of integers p®, with
p<a'al<p*<n
is < n'¥logn). Thus finally
];If,,(a.m) < exp (cn log n/ya?).

Hence

exp [(N1/y) log n] < exp (cn log n/y )
since the contribution of each of the ai" with

f,(@%) > nm'?
to the product (14) is > n*/¥. Thus
Ny < en/m 2t = o(n/zh.

LevMma 8. Let w < n"Y where yo/y — 0. Then the number of integers m < n
with f,(m) = u does not exceed cny/u log n.
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Lemma 8 follows immediately from Brun’s method.’
Lemma 9. Let§ = 8(¢) be sufficiently small. Then
Z 1/68° < ¢log n/y's?

(the b are the a not satisfying (13).
Clearly

2 < 2O 1/ /0) (217" /G = o))

where in )/, p runs in the interval n/¥ < p < nandin )., p £ n"¥ and v satisfies
0=v=(1—¢elogyor(l+elogy v
We obtain by a simple calculation (using Stirling’s formula) that
" ay k—v
%kl_/—pv)),* < ¢ log n/yx'(since 22" 1/p* = loglog n — log y + o(1),
if y does not tend to infinity too fast (y < (logn)' ™). Thus
21/ < (elog n/yzh) 2 (2 1/p%)"/0).

Now it is easy to see by a simple computation that

; (2 1/p%v/vl) < ey’ 6 = 6(e) (since 227 1/p* = log y + o(1)).

Thus finally
Z 1/6¥ < clog nfy’ 2

which proves Lemma 9.
Now we can prove Lemma 6. We split the integers not satisfying (13) into
two classes. In class I. are the integers with

Jutvs (bf”) > prniv

where ysys/y — 0 and y/ys = o(log y). In the second class are the other b{*.
By Lemma 7 (replacing y by %/ys , y: by #s), the number of integers of the first
class is o(n/a"). Let b{¥ be any integer of the s2cond class. Put

B = fﬂfﬂ's(bék)) H

and consider the set of all B’s. These integers satisfy the following conditions:
1) B < v, 2) kb — y/ys < v(B) £ k(v(B) denotes the number of prime
factors of B, multiple factors counted only once); #,(B) does not lie in the interval
[ —elogy, (1 + ¢ logy — y/ysl. 1) is clearly satisfied, 2) and 3) hold since

the number of prime factors > n**¥ of any integer < nis < ¥/ys .

5 Ibid., lemma 2, p. 739.
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Since 3/1; = o(log y) 3) means that v,(B) does not lie in [(1 — ¢/2) log ¥,
(1 + ¢/2) log y] and since by 2) #(B) can assume only y/ys = o(log ») values
we obtain from Lemma 9 that

, y logn log n
(15) Z 1/B < (cy/'ya) W < M—

From Lemma 8 (withy = y/ys , y» = y4) and (15) we obtain that the number
of integers m < n for which f,,,,{(m) is one of the B’s does not exceed

cny nlogy _ i
oy T z 1/B < ¢ i o(n/z%).

Thus the number of integers of the second class is also o(n /zY), which completes
the proof of the lemma.
Lemma 10.

2 1/ = (1 4 o(1))z*/k L.

The dash indicates that the summation is extended over the a{* satisfying (13);
in other words, the b{” are omitted.
Lemma 10 follows immediately from Lemmas 5 and 9 since

2k > ((clog n(/xh)).

Now we can prove

THEOREM 1.
n 2!
me(n) =(1 + o(1)) m =D
Consider
(16) M =2 (m(n/ad) — = (nY)

where ; (n/f) denotes the number of primes and powers of primes p® < n/t
withp 4 tin X/, a¥™ < '™ and o{* satisfies (13).

We have by the prime number theorem, if i tends to infinity sufficiently slowly
(this is the only place where the prime number theorem is used)

n

5 o (o) = (@ 4 o) T =P

(=1
(17) a log af

=20+ 20+ X
where in D7, af* " satisfies (13) and

_n_HIy < a'gk—n < n:‘fv_
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We have fory — j — =

(18) T =+ o) =51 T .

Further
Yt =3, ¥,

Where in Y., al" < ' and al*? satisfies (13), in 3, a¥ " = 2% and
a{ satisfies (13). We have from Lemmas 5 and 10 if y tends to infinity suffi-
ciently slowly (replace z by loglog n”’? = z + log j/y) and note & = (1 + o(1)z)

(x + Iog J/y) T
and similarly

xk—l

” J =1
Zv—(1+0(1))7m.

Thus if y tends to infinity sufficiently slowly
71

ylk — DI
Further if y — 7 = 0(1) and y tends to infinity sufficiently slowly

(19) 2271/a¥ 0 = (1 + o(1))

' ’ yn " 1 i .___xk_l
(2 i gk F e Logs <]0gnz gl % <clogﬂ(ft‘—1)l

by Lemma 5,in Y, n*™* < o < o'V,
Thus from (17), (18), (19) and (20)

£ 1
ntk— DSy —J

n :ck_l nlogy '
+o (o (——k_l)!) (1 +o() LBY E

@) X m/e V(= A + o) -

Dl (nXY) <clny =o(?—3)

og n z
y = o((log n)/z). Thus finally

nlog y " i

Togn (K —1)!°

Clearly M equals the number of integers not exceeding » of the form

(22) = (1 + o(1))

(23) ai™"-p%, with n'? < p, p £ af?, 0 2 27,
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and ¢ satisfies (13). Every integer w of (23) has exactly % prime factors and
satisfies (13), thusu = a®. Further every al® satisfying (13) ecan be written in
exactly V,(a{") ways in the form (23). Thus by (13) we obtain that the number
of al¥ £ n satisfying (13) is

n gt
(24) (1 “l‘ 0(1)) l?g_—?i (f;_—_l_ﬁ
Thus finally from (24) and Lemma 6 we obtain
n e
m(n) = (1 4 o(1)) P —g

which proves Theorem 1.

By the same argument we can prove the following results:

Taeorem 1I. Denote by w.(n) the number of integers < n having exactly k
prime factors multiple factors counted multiply. Then

k—1
x

n
gt — Dt

Tarorem 111, Denote by . (n) the number of square-free integers < n having
exactly k prime factors. Then

m(n) = (1 + o(1))

R @

Tk (ﬂ) Lz (1 + 0(1)) 2 logn (.& _ 1)'

It would be interesting to investigate ﬁhat for what values of I(! depending on n) is
lim m(n)/mi(r) = 1 and lim m;(n) /7 (n) = /6.
We obtain from Theorem 1 (confirming a conjecture of Hardy)® that

(25) () = (1 + o(2)) @”‘;)—; .

From (25) and a theorem of Behrend® we deduce
TaeoreM IV. Let ay < az -+ < @, = n be a sequence of iniegers no one of
which divides the other, then for n sufficiently large
1 1 log n
(26) Ea‘_ <(,\/% "|"é) 3

I

and for a suitable sequence a;

@7) Z— (\/—-elc’g".

Theorem IV means that
= 1 i 1
o Gilogn_\/?':r'

s London Math. Soc. Journal, Vol. X (1935) p. 42-44.
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We are going to give only the outline of the proof.
Behrend proved that

1 log n
2 o <e 3
and it is not difficult to show that we can take 1/(/2r) + ¢ for Behrend’s ¢,
(we omit the details). This proves (26). Further if we consider the integers
having exactly 2 prime factors, we obtain (24) from (25) by a simple computa-
tion, this proves Theorem IV.

We can raise several problems:

1). For which k is m(n) maximal? It immediately follows from (1) and (4)
that k = z + 0(z?), the same holds for the k which maximizes m;(n) and e (n).
It seems likely that & = z + 0(1).

2). Does there exist a kosuch thatfork; S ks < ky £ ks < ks

Tkl(n) < Tlg(n); rﬁ'g(ﬂ’) > Tk‘(ﬂ)-T
So far, I could not make any progress with 2). But we will solve an analogous
question for
1

Al:z\‘-ﬁl—)'

1

First of all it follows from (6) thatforx +e < ), < Lo
(28) 4, < Ah .

Thus it suffices to consider the values! £ x + ¢. TFirst we show that for every
l=2x+4+¢

(29) A > ca:*/l!.
Suppose that (28) is not true. Then for some! =z + ¢
A < '/l

But then from (6) forall [; > |

@+ _ @+o”

@+ 1)l I!
but this clearly contradicts Lemma 2 forl; < x + a* say (if eis sufficiently small),
thus (29) is proved.

We have as in the proof of Lemma 2

Ay < (a1

i

y 1
(30) a4+ 1 Z /el > Z” a® loglog a® log 2 Z 1/al?

1 An analogous conjecture had been made by Auluck, Chowla and Gupta for py(n) the
number of partition of n into k summands. (Indian Journal of Math. 1942.)
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where the two dashes indicate that the summation is extended over
thea’ < n"™™*. TLetn'™* <m <n. Thenwe have from (1)

i

/e <¢ 5 .
m<alld <2m E! log n

14
Thus we obtain from (29) and Lemma 5 by a simple calculation
log n

@) 2" 1al =3 1/af’ = 3" 1/a > 3 1/af’ — ¢ 2 /1) b_:c__

gn
> (1 = ¢/2) 2 1/ad’
where in >
P < g < g,

Thus from (30) and (31)

> 1/a > (1 — ofa) T 18T 5 /0P —

l+1

¢logx CRE el - clogz a®
Hence
(32) A > Ay

for ! < 2 — ¢ log . Thus we only have to consider the interval x — ¢ log
2z <1 £ z+4 ¢ The method which we will now use applies to all I satisfying
r—ci<lizz+e

We have as in the proof of Lemma 2.

1 1
C+D) T V/ad™ = X1/ 3 5 =X mZ e

1

- Z (n Em _a Zl - Z!

(I)

(33)

the prime indicates that p < n/a” and p £ a®, the two primes that. p” Sn/a;
the three primes that p* = ‘n/af” and p*|al’. We evidently have

1
(34) Ya=12, _pTa(Za a0 + 2 p)
In D

af™ < 2, af"™ = 0 (mod p),
»
and in Zq
P2 af® =0 (mod p).
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From Lemma, 5, we obtain by a simple calculation that for p < n°

1 a1 1
(35) T e = @+ o) o 1),(1 - ;)
and
(36) st oy
g = (1 + o(1)) ol
We have
1 1 1
3 =g (Zs oo B -m)
p>ne P a; s
(37) . | i
= p;l ‘? tgtnzfpm ; < clogn ; == = o(l).
Thus, finally from (34), (35), (36), and (37)
[ 4
(38) Te= 4o E T = AT L+ o),
tp D p P
Further

1 1 1
irRm o ==X mE’ '1;
i pizn P
mzf’f’

_’.%.,. GS
agn(p =N

Thus it is easy to see that
1
2a= A;(loglogn + 0261 -+ + E;}&
a>1

(39) 1 n
- Z o (Ioglog n — loglog a@) + o(d)).

Now we obtain by a simple calculation
1 n =t ¢
pIED I (logIOg n — loglog ;5 ) = 2, 2o - (—10g ‘)
a; a; =1 y
(40)
+ Zr (10g10“ n — loglog (n) + o(4y),
where in >,

t—1
< o < .

We have by (1) forn' ™ <m < n
1 xt

X m <o
mSas(Dam & I!'log n
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Thus by a simple calculation
¥, <z (tog1 log log —5
”a?) og log n — log Ogagt}

[ 4 (1/y)logn H
c?_f]_o%i (loglog n — log k) =o($

Hence from (19) by a simple computation

(40a) 2 = A+ o(4y).
Thus from (39) and (40)
(41) u =4, (loglogn + 0261 - Z 5 ) + o(4,).

Hence from (33), (38) and (41)
log log n + 0261 +E L - +o(1)

(42) _ 2rz+l
Aya = Ay ; + 1
Put
c=0-261+21)—}ﬂ—1, i el <0,
o
Thus if n is sufficiently large
(43) Ay > Ayforloglogn +C —e> 1+ 1
and
(44) A < A;forloglog n + C+e<l+ 1.
To complete our proof, we shall show that
(45) Apn= Ay, 1 =loglogn + 0(1)

is impossible for large n. Assume that

Z m (t+n

Denote by P the greatest prime < n/2.3. - - p;y. It follows from a theorem
of Chebichev that (the theorem in question states that there always is a prime
between £ and 2f)

n n
easaeit Sac, WK BS e ¥ g
oY% T 25 P

(1+1)

(46)

are multiples of P. Write
Ay = Aj + A

Thus clearly none of the a;
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where 4 is the sum of the reciprocals of the a{” with a{’ = 0 (mod P) and 4}

is the sum of the other 1/a{”. We must have

Al = Aja — AT

The smallest common denominator of the fractions on the left side is not a mul-
tiple of P. On the right side all the denominators are multiples of P. Write
1 1
Ao 23 =
; P ; I
It follows from (46) that all the x; are square-free integers composed of primes
<2p;;. Thus the number of z; is £2"*~!. Their common denominator is
not greater than
II » < 4%,
PE2pi—

Thus from (45), if we write

4; = % =
i Pt” (ﬂ, U) 1

u < 8711 < (log n)° < P. Thus (45) is impossible, since P appears in the
denominator of one side and not of the other. Thus we can state
TreEorEM V. Denote by A,, the greatest A. Then for sufficiently large n

o Nloglomn B 0L, @ =050 +Z§5i'ﬁ ~1, -1<C<0
P

except if loglog n + C = J + ¢, (j integer, € small) in which case ly can be J or
J—1 Aloifli<b<lbh<lL<l

A;l < A;, < A;D and Ag‘ < A.;; < A‘n :

Denote
r 1 " .I.
Ai=2mm, A=Y
. 0 C;

where b’ denotes the integers <n having exactly ! prime factors, multiple
factors counted multiply, and ¢{” denotes the square-free integers <n having
exactly ! prime factors. An analogous theorem holds for A; and A7 of course
with different values of ;.

ApDED IN PROOF: Recently 1 learned that about the same time as I, Sathe also

obtained these results, Sathe’s results have not yet been published.
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